Publications by authors named "Holoubek J"

High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.

View Article and Find Full Text PDF

Enveloped viruses, such as flaviviruses and coronaviruses, are pathogens of significant medical concern that cause severe infections in humans. Some photosensitizers are known to possess virucidal activity against enveloped viruses, targeting their lipid bilayer. Here we report a series of halogenated difluoroboron-dipyrromethene (BODIPYs) photosensitizers with strong virus-inactivating activity.

View Article and Find Full Text PDF

The concept of employing highly concentrated electrolytes has been widely incorporated into electrolyte design, due to their enhanced Li-metal passivation and oxidative stability compared to their diluted counterparts. However, issues such as high viscosity and sub-optimal wettability, compromise their suitability for commercialization. In this study, we present a highly concentrated dimethyl ether-based electrolyte that appears as a liquid phase at ambient conditions via Li - solvents ion-dipole interactions (Coulombic condensation).

View Article and Find Full Text PDF

Background: Large femoral defects after trauma, femoral non-unions, fractures complicated by osteomyelitis or defects after bone tumour resection present high burden and increased morbidity for patient and are challenging for reconstructive surgeons. Defects larger than 6 cm and smaller defects after failed spongioplasty are suitable for reconstruction using a free, eventually a pedicled vascularised bone flap. The free fibular flap is preferred but an iliac crest free flap or a pedicled medial femoral condyle flap can be also used.

View Article and Find Full Text PDF

In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are worried about a type of infection that can make people really sick, especially those with weak immune systems.
  • They're looking for new ways to treat these infections because some medicines don't work anymore.
  • This study created a new way to test these infections on pigs, which helps understand how they develop and how the body heals itself after getting hurt.*
View Article and Find Full Text PDF

Skin and soft tissue infections (SSTIs) represent a significant healthcare challenge, particularly in the context of increasing antibiotic resistance. This study investigates the efficacy of a novel therapeutic approach combining bacteriophage (phage) therapy with a gum Karaya (GK)-based hydrogel delivery system in a porcine model of deep staphylococcal SSTIs. The study exploits the lytic activity and safety of the Staphylococcus phage 812K1/420 of the Kayvirus genus, which is active against methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Background: The purpose of dermal substitutes is to mimic the basic properties of the extracellular matrix of human skin. The application of dermal substitutes to the defect reduces the formation of hypertrophic scars and improves the scar quality. This study aims to develop an original dermal substitute enriched with stable fibroblast growth factor 2 (FGF2-STAB®) and test it in an animal model.

View Article and Find Full Text PDF

Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur and the poor interfacial contacts induced by its large volume change during cycling, impeding charge transfer among different solid components.

View Article and Find Full Text PDF

Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all-fluorinated ester-based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature-resilient physicochemical properties and moderate ion-paired solvation, leading to a half solvent-separated and half contact-ion pair in a sole electrolyte.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis (TBE), is a medically important flavivirus endemic to the European-Asian continent. Although more than 12,000 clinical cases are reported annually worldwide, there is no anti-TBEV therapy available to treat patients with TBE. Porphyrins are macrocyclic molecules consisting of a planar tetrapyrrolic ring that can coordinate a metal cation.

View Article and Find Full Text PDF

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity.

View Article and Find Full Text PDF

The future application of Li metal batteries (LMBs) at scale demands electrolytes that endow improved performance under fast-charging and low-temperature operating conditions. Recent works indicate that desolvation kinetics of Li plays a crucial role in enabling such behavior. However, the modulation of this process has typically been achieved through inducing qualitative degrees of ion pairing into the system.

View Article and Find Full Text PDF

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells.

View Article and Find Full Text PDF

Transection of the radial nerve is frequently associated with humeral shaft fractures that are part of a very complex upper extremity injury. In the presented case, a 19-year-old man with a 10-cm radial nerve defect with a need for nerve grafting to recover complete sensory and motor deficit of the radial nerve. In our case, at the same time we provided the tendon transfer of musculus (m.

View Article and Find Full Text PDF

Sulfurized polyacrylonitrile (SPAN) is considered as a high-value cathode material, which leverages the high energy of S redox while mitigating the negative externalities that limit elemental S cycling. As such, the sulfur content in Li-SPAN batteries plays a critical role. In this work, we demonstrate that high-S loading SPAN cathodes, where the PAN backbone approaches the saturation point without signs of elemental S, are highly dependent on the electrolyte chemistry for long-term reversibility.

View Article and Find Full Text PDF

Nonaqueous fluidic transport and ion solvation properties under nanoscale confinement are poorly understood, especially in ion conduction for energy storage and conversion systems. Herein, metal-organic frameworks (MOFs) and aprotic electrolytes are studied as a robust platform for molecular-level insights into electrolyte behaviors in confined spaces. By employing computer simulations, along with spectroscopic and electrochemical measurements, we demonstrate several phenomena that deviate from the bulk, including modulated solvent molecular configurations, aggregated solvation structures, and tunable transport mechanisms from quasi-solid to quasi-liquid in functionalized MOFs.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - The recent Monkeypox outbreak highlights the need for research on the basic biology of orthopoxviruses, as it hasn’t been thoroughly studied before.
  • - This study uses Oxford Nanopore long-read RNA-Sequencing to analyze the transcriptome of the monkeypox virus, addressing a significant gap in research.
  • - By analyzing direct cDNA and native RNA sequencing reads, the research aims to reveal changes in gene expression for both the monkeypox virus and its host during infection, leading to a better understanding of transcriptomic alterations caused by the virus.
View Article and Find Full Text PDF

Unlabelled: Previous surgical procedures in the abdomen are no longer contra-indications for free flap breast reconstruction using the deep inferior epigastric artery perforator flap. Nonetheless, a possible consequence of previous surgical procedures may be trauma to the deep inferior epigastric (DIE) pedicle, leading to interruption. In these cases, a modification in operative strategy may be required.

View Article and Find Full Text PDF

Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC).

View Article and Find Full Text PDF

Lithium fluorinated-carbon (Li/CF ) is one of the most promising chemistries for high-energy-density primary energy-storage systems in applications where rechargeability is not required. Though Li/CF demonstrates high energy density (>2100 Wh kg ) under ambient conditions, achieving such a high energy density when exposed to subzero temperatures remains a challenge, particularly under high current density. Here, a liquefied gas electrolyte with an anion-pair solvation structure based on dimethyl ether with a low melting point (-141 °C) and low viscosity (0.

View Article and Find Full Text PDF