Publications by authors named "Holly Schroeder"

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus.

View Article and Find Full Text PDF

Background: Extrauterine growth restriction from inadequate nutrition remains a significant morbidity in very low birth weight infants. Participants in the California Perinatal Quality Care Collaborative Quality Improvement Collaborative, Grow, Babies, Grow! developed or refined tools to improve nutrition and reduce practice variation.

Method: Five Neonatal Intensive Care Units describe the development and implementation of nutrition tools.

View Article and Find Full Text PDF

In addition to direct neutralization and other classical effector functions, IgG possesses a little recognized and thus under-utilized effector function at mucosal surfaces: Fc-mucin bonds enable IgG to trap viruses in mucus. Due to the paucity of envelope glycoproteins that limits the number of IgG that can bind HIV, it remains poorly understood whether IgG-mucin interactions can effectively immobilize HIV in human cervicovaginal mucus (CVM). Here, we obtained 54 fresh, undiluted CVM specimens from 17 different women, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent HIV virus-like-particles in CVM treated with various HIV-specific IgG.

View Article and Find Full Text PDF

The gastrointestinal (GI) mucosa is coated with a continuously secreted mucus layer that serves as the first line of defense against invading enteric bacteria. We have previously shown that antigen-specific immunoglobulin G (IgG) can immobilize viruses in both human airway and genital mucus secretions through multiple low-affinity bonds between the array of virion-bound IgG and mucins, thereby facilitating their rapid elimination from mucosal surfaces and preventing mucosal transmission. Nevertheless, it remains unclear whether weak IgG-mucin crosslinks could reinforce the mucus barrier against the permeation of bacteria driven by active flagella beating, or in predominantly MUC2 mucus gel.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is lined with a layer of viscoelastic mucus gel, characterized by a dense network of entangled and cross-linked mucins together with an abundance of antibodies (Ab). Secretory IgA (sIgA), the predominant Ab isotype in the GI tract, is a dimeric molecule with 4 antigen-binding domains capable of inducing efficient clumping of bacteria, or agglutination. IgG, another common Ab at mucosal surfaces, can cross-link individual viruses to the mucin mesh through multiple weak bonds between IgG-Fc and mucins, a process termed muco-trapping.

View Article and Find Full Text PDF

IgG possesses an important yet little recognized effector function in mucus. IgG bound to viral surface can immobilize otherwise readily diffusive viruses to the mucin matrix, excluding them from contacting target cells and facilitating their elimination by natural mucus clearance mechanisms. Cervicovaginal mucus (CVM) is populated by a microbial community, and its viscoelastic and barrier properties can vary substantially not only across the menstrual cycle, but also in women with distinct microbiota.

View Article and Find Full Text PDF

Unlabelled: Antibodies that specifically bind polyethylene glycol (PEG) can lead to rapid elimination of PEGylated therapeutics from the systemic circulation. We have recently shown that virus-binding IgG can immobilize viruses in mucus via multiple low-affinity crosslinks between IgG and mucins. However, it remains unclear whether anti-PEG antibodies in mucus may also alter the penetration and consequently biodistribution of PEGylated nanoparticles delivered to mucosal surfaces.

View Article and Find Full Text PDF

Human cervicovaginal mucus (CVM) is a viscoelastic gel containing a complex mixture of mucins, shed epithelial cells, microbes and macromolecules, such as antibodies, that together serve as the first line of defense against invading pathogens. Here, to investigate the affinity between IgG and different mucus constituents, we used Fluorescence Recovery After Photobleaching (FRAP) to measure the diffusion of IgG in fresh, minimally modified CVM. We found that CVM exhibits substantial spatial variations that necessitate careful selection of the regions in which to perform FRAP.

View Article and Find Full Text PDF