Publications by authors named "Holly McAleese"

The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface.

View Article and Find Full Text PDF

Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination.

View Article and Find Full Text PDF

Malaria is caused by eukaryotic protozoan parasites of the genus . There are 249 million new cases and 608,000 deaths annually, and new interventions are desperately needed. Malaria vaccines can be divided into three categories: liver stage, blood stage, or transmission-blocking vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • AMA1 is an important part of a possible malaria vaccine and helps the malaria parasite invade host cells by binding to another protein called RON2L.
  • Researchers created three new versions of the AMA1-RON2L complex to see if they could produce powerful antibodies that fight against malaria.
  • One of these new versions, called SBD1, worked better than the others by triggering strong immune responses that could fight various malaria strains without blocking the RON2L binding.*
View Article and Find Full Text PDF

Malaria transmission-blocking vaccines (TBVs) reduce disease transmission by breaking the continuous cycle of infection between the human host and the mosquito vector. Domain 1 (D1) of Pfs230 is a leading TBV candidate and comprises the majority of transmission-reducing activity (TRA) elicited by Pfs230. Here we show that the fusion of Pfs230D1 to a 60-copy multimer of the catalytic domain of dihydrolipoyl acetyltransferase protein (E2p) results in a single-component nanoparticle composed of 60 copies of the fusion protein with high stability, homogeneity, and production yields.

View Article and Find Full Text PDF

Waning immunity and emerging variants necessitate continued vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Improvements in vaccine safety, tolerability, and ease of manufacturing would benefit these efforts. Here, we develop a potent and easily manufactured nanoparticle vaccine displaying the spike receptor-binding domain (RBD).

View Article and Find Full Text PDF

A malaria vaccine that blocks parasite transmission from human to mosquito would be a powerful method of disrupting the parasite lifecycle and reducing the incidence of disease in humans. Pfs48/45 is a promising antigen in development as a transmission blocking vaccine (TBV) against the deadliest malaria parasite Plasmodium falciparum. The third domain of Pfs48/45 (D3) is an established TBV candidate, but production challenges have hampered development.

View Article and Find Full Text PDF