Publications by authors named "Holly Lutz"

Aims: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins.

View Article and Find Full Text PDF

African-Malagasy species of the bat genus Miniopterus are notable both for the dramatic increase in the number of newly recognized species over the last 15 years, as well as for the profusion of new taxa from Madagascar and the neighboring Comoros. Since 2007, seven new Malagasy Miniopterus species have been described compared to only two new species since 1936 from the Afrotropics. The conservative morphology of Miniopterus and limited geographic sampling in continental Africa have undoubtedly contributed to the deficit of continental species.

View Article and Find Full Text PDF

The composition and diversity of avian microbiota are shaped by many factors, including host ecologies and environmental variables. In this study, we examine microbial diversity across 214 bird species sampled in Malawi at five major body sites: blood, buccal cavity, gizzard, intestinal tract, and cloaca. Microbial community dissimilarity differed significantly across body sites.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates the impact of water treatment upgrades on the microbial communities in the Chicago Area Waterways (CAWS) over a seven-year period, focusing on changes before and after the 2016 interventions aimed at improving river water quality.
  • - Results indicated that while disinfection upgrades reduced fecal coliform bacteria in wastewater and the river, overall changes in the microbial community dynamics were primarily influenced by seasonal variations rather than the upgrades themselves.
  • - The research combines advanced gene sequencing with traditional methods, providing a comprehensive understanding of how water management strategies affect microbial ecosystems in urban waterways.
View Article and Find Full Text PDF

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry).

View Article and Find Full Text PDF

We sequenced the complete mitochondrial genomes of two bat fly species within the Nycteribiidae (Diptera: Hippoboscoidea) - (Cyclopodiinae) and (Nycteribiinae). Both mitogenomes were complete and contained 13 protein-coding genes, 22 tRNAs, and two rRNAs. Relative to the inferred ancestral gene order of dipteran mitochondrial genomes, no rearrangements were identified in either species.

View Article and Find Full Text PDF

Understanding the sets of inter- and intraspecies interactions in microbial communities is a fundamental goal of microbial ecology. However, the study and quantification of microbial interactions pose several challenges owing to their complexity, dynamic nature, and the sheer number of unique interactions within a typical community. To overcome such challenges, microbial ecologists must rely on various approaches to distill the system of study to a functional and conceptualizable level, allowing for a practical understanding of microbial interactions in both simplified and complex systems.

View Article and Find Full Text PDF

We previously demonstrated that lifelong antibiotic (ABX) perturbations of the gut microbiome in male APPPS1-21 mice lead to reductions in amyloid β (Aβ) plaque pathology and altered phenotypes of plaque-associated microglia. Here, we show that a short, 7-d treatment of preweaned male mice with high-dose ABX is associated with reductions of Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes at 9 wk of age in male mice only. More importantly, fecal microbiota transplantation (FMT) from transgenic (Tg) or WT male donors into ABX-treated male mice completely restored Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes.

View Article and Find Full Text PDF

Objectives: The severity of familial Mediterranean fever (FMF) may vary in different areas, suggesting a role for environmental factors. We analysed the composition of gut microbiota among children with FMF and healthy controls from Turkey and the USA and determined its effect on disease severity.

Methods: Children with FMF with pathogenic MEFV mutations and healthy controls from Turkey and the USA were enrolled.

View Article and Find Full Text PDF

Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals.

View Article and Find Full Text PDF

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives.

View Article and Find Full Text PDF

Human thanatomicrobiota studies have shown that microorganisms inhabit and proliferate externally and internally throughout the body and are the primary mediators of putrefaction after death. Yet little is known about the source and diversity of the thanatomicrobiome or the underlying factors leading to delayed decomposition exhibited by reproductive organs. The use of the V4 hypervariable region of bacterial 16S rRNA gene sequences for taxonomic classification ("barcoding") and phylogenetic analyses of human postmortem microbiota has recently emerged as a possible tool in forensic microbiology.

View Article and Find Full Text PDF

A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated gut microbiomes across approximately 900 vertebrate species, including mammals and birds, to understand the influence of diet, phylogeny, and physiology on microbiome structure.
  • Results showed that in nonflying mammals, gut microbial communities are strongly linked to their diets and evolutionary relationships, while in birds, these correlations are weak.
  • Notably, bats exhibited gut microbiomes similar to birds, indicating that adaptations related to flight might disrupt traditional host-microbe relationships found in other mammals.
View Article and Find Full Text PDF

Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats.

View Article and Find Full Text PDF

Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World.

View Article and Find Full Text PDF

The European common cuttlefish, Sepia officinalis, is used extensively in biological and biomedical research, yet its microbiome remains poorly characterized. We analyzed the microbiota of the digestive tract, gills, and skin in mariculture-raised using a combination of 16S rRNA amplicon sequencing, quantitative PCR (qPCR), and fluorescence spectral imaging. Sequencing revealed a highly simplified microbiota consisting largely of two single bacterial amplicon sequence variants (ASVs) of and .

View Article and Find Full Text PDF

Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system.

View Article and Find Full Text PDF

Variation in susceptibility is ubiquitous in multi-host, multi-parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes.

View Article and Find Full Text PDF

Parasites with low host specificity (e.g. infecting a large diversity of host species) are of special interest in disease ecology, as they are likely more capable of circumventing ecological or evolutionary barriers to infect new hosts than are specialist parasites.

View Article and Find Full Text PDF

Acquiring genomic material from avian malaria parasites for genome sequencing has proven problematic due to the nucleation of avian erythrocytes, which produces a large ratio of host to parasite DNA (∼1 million to 1 bp). We tested the ability of laser capture microdissection microscopy to isolate parasite cells from individual avian erythrocytes for four avian Plasmodium species, and subsequently applied whole genome amplification and Illumina sequencing methods to Plasmodium relictum (lineage pSGS1) to produce sequence reads of the P. relictum genome.

View Article and Find Full Text PDF

Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents.

View Article and Find Full Text PDF

Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera.

View Article and Find Full Text PDF