Publications by authors named "Holly L Spencer"

We report a general method for amino acid-type specific O-labeling of recombinant proteins in Escherichia coli. In particular, we have prepared several [1- C, O]-labeled yeast ubiquitin (Ub) samples including Ub-[1- C, O]Gly, Ub-[1- C, O]Tyr, and Ub-[1- C, O]Phe using the auxotrophic E. coli strain DL39 GlyA λDE3 (aspC tyrB ilvE glyA λDE3).

View Article and Find Full Text PDF

Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence of Basidiomycota origin: the Schizophyllum commune hydrophobin SC16 (hyd1).

View Article and Find Full Text PDF

Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized.

View Article and Find Full Text PDF

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell.

View Article and Find Full Text PDF

Dictyostelium discoideum MyoB is a class I myosin involved in the formation and retraction of membrane projections, cortical tension generation, membrane recycling, and phagosome maturation. The MyoB-specific, single-lobe EF-hand light chain MlcB binds the sole IQ motif of MyoB with submicromolar affinity in the absence and presence of Ca(2+). However, the structural features of this novel myosin light chain and its interaction with its cognate IQ motif remain uncharacterized.

View Article and Find Full Text PDF

The E-protein transcription factors play essential roles in lymphopoiesis, with E12 and E47 (hereafter called E2A) being particularly important in B cell specification and maturation. The E2A gene is also involved in a chromosomal translocation that results in the leukemogenic oncoprotein E2A-PBX1. The two activation domains of E2A, AD1 and AD2, display redundant, independent, and cooperative functions in a cell-dependent manner.

View Article and Find Full Text PDF

Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears nine type I cohesin modules that interact with the type I dockerin modules of secreted hydrolytic enzymes and promotes catalytic synergy.

View Article and Find Full Text PDF

Streptococcus pneumoniae is a serious human pathogen that presents on its surface numerous proteins involved in the host-bacterium interaction. The carbohydrate-active enzymes are particularly well represented among these surface proteins, and many of these are known virulence factors, highlighting the importance of carbohydrate processing by this pathogen. StrH is a surface-attached exo-β-D-N-acetylglucosaminidase that cooperates with the sialidase NanA and the β-galactosidase BgaA to sequentially degrade the nonreducing terminal arms of complex N-linked glycans.

View Article and Find Full Text PDF

E-proteins are critical transcription factors in B-cell lymphopoiesis. E2A, 1 of 3 E-protein-encoding genes, is implicated in the induction of acute lymphoblastic leukemia through its involvement in the chromosomal translocation 1;19 and consequent expression of the E2A-PBX1 oncoprotein. An interaction involving a region within the N-terminal transcriptional activation domain of E2A-PBX1, termed the PCET motif, which has previously been implicated in E-protein silencing, and the KIX domain of the transcriptional coactivator CBP/p300, critical for leukemogenesis.

View Article and Find Full Text PDF

The high-affinity calcium-mediated type II cohesin-dockerin interaction is responsible for the attachment of the multi-enzyme cellulose-degrading complex, termed the cellulosome, to the cell surface of the thermophilic anaerobe Clostridium thermocellum. A trimodular 40 kDa complex comprising the SdbA type II cohesin and the the CipA type II dockerin-X module modular pair from the cellulosome of C. thermocellum has been crystallized.

View Article and Find Full Text PDF

The assembly of a functional cellulose-degrading complex termed the cellulosome involves two specific calcium-dependent cohesin-dockerin interactions: type I and type II. Extensive structural and mutagenesis studies have been performed on the type I modules and their interaction in an attempt to identify the underlying molecular determinants responsible for this specificity. However, very little structural information exists for the type II interaction.

View Article and Find Full Text PDF

The cellulosome is a membrane-bound, extracellular multi-subunit complex responsible for the degradation of crystalline cellulose by a number of organisms including anaerobic bacteria and fungi. The hydrophilic X-module (CipA-X) from the modular scaffoldin subunit of Clostridium thermocellum cellulosome has been proposed to play various roles in cellulosomal function, including thermal and structural stability. Towards elucidating the function of CipA-X using structural and biophysical studies, the region comprising residues 1692-1785 from the C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7l3p9vspqvtmvh73b0t9qlop8r253jnb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once