Publications by authors named "Holly J R Popham"

Article Synopsis
  • * A study tested the susceptibility of Hübner (a pest affecting soybean and cotton) to HearNPV, establishing a diagnostic concentration for monitoring pest populations and assessing any potential cross-resistance with certain insecticides.
  • * The findings indicated low variation in susceptibility to HearNPV across different populations, with high mortality rates at the tested concentration, and no cross-resistance with flubendiamide or indoxacarb, suggesting HearNPV as a potent tool in pest management strategies.
View Article and Find Full Text PDF

Pathogenic assessment of a baculovirus-based biopesticide containing Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV: Baculoviridae: Alphabaculovirus) infecting fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is reported.

View Article and Find Full Text PDF

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a destructive crop pest native to North, Central, and South America that recently has spread to Africa and Asia.

View Article and Find Full Text PDF

Insecticide resistance has been and continues to be a significant problem for invertebrate pest control. As such, effective insecticide resistance management (IRM) is critical to maintain the efficacy of current and future insecticides. A technical group within CropLife International, the Insecticide Resistance Action Committee (IRAC) was established 35 years ago (1984) as an international association of crop protection companies that today spans the globe.

View Article and Find Full Text PDF

Isolates of the alphabaculovirus species, , have been identified that produce polyhedral occlusion bodies and infect larvae of the soybean looper, . In this study, we report the discovery and characterization of a novel -infecting alphabaculovirus, Chrysodeixis includens nucleopolyhedrovirus #1 (ChinNPV#1), that produces tetrahedral occlusion bodies. In bioassays against larvae, ChinNPV #1 exhibited a degree of pathogenicity that was similar to that of other ChinNPV isolates, but killed larvae more slowly.

View Article and Find Full Text PDF

Chrysodeixis includens nucleopolyhedrovirus (ChinNPV: Baculoviridae: Alphabaculovirus) is an active ingredient of a biological-based insecticide (Chrysogen®) recommended against soybean looper (SBL), Chrysodeixis includens (Walker, [1858]), in soybean in Brazil. We investigated if SBL strains resistant to chemical insecticides are cross-resistant to the baculovirus ChinNPV. In droplet feeding bioassays, SBL strains resistant to lambda-cyhalothrin and teflubenzuron showed equivalent susceptibility to ChinNPV as heterozygous and susceptible strains, indicating no cross-resistance between ChinNPV and chemical insecticides in SBL.

View Article and Find Full Text PDF

Horizontal transmission of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been found to occur through several pathways involving abiotic factors such as soil, wind, and rain, and biotic factors such as predators, parasitoids, and infected hosts. Previous studies examining horizontal transmission through certain biological carriers speculated they were likely not significant in increasing infection rates, however; these studies only focused on a relatively small number of arthropods present within a field setting. This study was conducted to evaluate the horizontal transmission potential of HearNPV by all potential biological carriers when applied as a foliar bioinsecticide or as virus-infected, nonmotile Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) larvae in a soybean field.

View Article and Find Full Text PDF

The Chrysodeixis includens nucleopolyhedrovirus (ChinNPV: Baculoviridae: Alphabaculovirus) is a registered insecticide for the management of soybean looper, Chrysodeixis includens (Walker, [1858]) in Brazil. We conducted studies of baseline susceptibility of Brazilian populations of C. includens to the ChinNPV (Chrysogen, AgBiTech, Fort Worth, TX) as valuable knowledge in support of Integrated Pest Management and Insect Resistance Management programs.

View Article and Find Full Text PDF

The resistance evolution of Spodoptera frugiperda (J.E. Smith) to insecticides and Bt proteins along with the intensive crop production systems adopted in Brazil make it challenging to implement integrated pest management.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often based on simplistic methods that yield nanoparticles of nonuniform shapes and sizes, leaving questions about the precise treatments test insects experienced.

View Article and Find Full Text PDF

A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

View Article and Find Full Text PDF

Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This section provides an overview of the baculovirus life cycle and use of baculoviruses as insecticidal agents. This chapter includes discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy.

View Article and Find Full Text PDF

Chitin is an extracellular biopolymer that contributes to the cuticular structural matrix in arthropods. As a consequence of its rigid structure, the chitinous cuticle must be shed and replaced to accommodate growth. Two chitin synthase genes that encode for chitin synthase A (ChSA), which produces cuticular exoskeleton, and chitin synthase B (ChSB), which produces peritrophic membrane, were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

View Article and Find Full Text PDF

Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H.

View Article and Find Full Text PDF

A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infected with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV) accumulated hsp70 transcripts throughout the 72-hour course of infection in the midgut, hemocytes, and fat body.

View Article and Find Full Text PDF

The Helicoverpa zea transcriptome was analyzed 24 h after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (p < 0.

View Article and Find Full Text PDF

The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm S. littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of 137,998 bp was found to harbor 132 open reading frames and 15 homologous repeat regions.

View Article and Find Full Text PDF

The unintentional introduction of the cactus moth, Cactoblastis cactorum, a successful biological control agent formerly employed in the control of invasive prickly pear cactus species (Opuntia spp.) in Australia, Hawaii, South Africa, and various Caribbean islands, has posed great concern as to the possible threat to native, endangered species of cactus in the southeastern USA as well as with the potential to cause a major infestation of commercial and agricultural cactus crops in Mexico. A number of control measures have been investigated with varying degrees of success including, field exploration for cactus moth-specific parasitoids, insecticides, fungal, bacterial, and nematode agents.

View Article and Find Full Text PDF

Inductively coupled plasma mass spectrometry and (59)Fe radiotracers were used to investigate changes in levels of Fe in the tissues of 4th instar Heliothis virescens larvae following infection with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV) or with Autographa californica multiple nucleopolyhedrovirus. Baculovirus infection led to significant changes in hemolymph Fe levels late in infection. (24)Na radiotracer ingested by 4th instar larvae was rapidly cleared to nearly undetectable levels 6 h post-ingestion.

View Article and Find Full Text PDF

To determine the genetic diversity within the baculovirus species Autographa calfornica multiple nucleopolyhedrovirus (AcMNPV; Baculoviridae: Alphabaculovirus), a PCR-based method was used to identify and classify baculoviruses found in virus samples from the lepidopteran host species A. californica, Autographa gamma, Trichoplusia ni, Rachiplusia ou, Anagrapha falcifera, Galleria mellonella, and Heliothis virescens. Alignment and phylogenetic inference from partial nucleotide sequences of three highly conserved genes (lef-8, lef-9, and polh) indicated that 45 of 74 samples contained isolates of AcMNPV, while six samples contained isolates of Rachiplusia ou multiple nucleopolyhedrovirus strain R1 (RoMNPV-R1) and 25 samples contained isolates of the species Trichoplusia ni single nucleopolyhedrovirus (TnSNPV; Alphabaculovirus).

View Article and Find Full Text PDF

Larvae of the tobacco budworm are major polyphagous pests throughout the Americas. Development of effective microbial biopesticides for this and related noctuid pests has been stymied by the natural resistance mediated innate immune response. Hemocytes play an early and central role in activating and coordinating immune responses to entomopathogens.

View Article and Find Full Text PDF

Using RNA-seq digital difference expression profiling methods, we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcripts was assembled from 202 million 42-base tags by combining the sequence data of all samples, and the assembled sequences were then subject to BLASTx analysis to determine gene identities. We used the fully sequenced HzSNPV reference genome to align 477,264 Illumina sequence tags from infected hemocytes in order to document expression of HzSNPV genes at early points during infection.

View Article and Find Full Text PDF

Three biopesticide parameters were evaluated for a fast-killing isolate (3AP2) and a wild-type isolate (Sf3) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Both isolates were evaluated for virus production using in vivo methods, for speed of kill based on bioassay of applications to glasshouse-grown and field-grown plants, and for residual insecticidal activity of unformulated virus and an encapsulating formulation to provide UV protection. Two inoculation rates comparing relative in vivo production of the isolates demonstrated 3AP2 inoculated larvae were significantly smaller than Sf3 inoculated larvae at death.

View Article and Find Full Text PDF

We studied how biologically relevant trace metals (i.e., micronutrients) in the hemolymph of larval Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) changed in response to per os baculovirus infection, larval development, and injection of heat-killed bacteria.

View Article and Find Full Text PDF

To assess the diversity and relationships of baculoviruses found in insects of the heliothine pest complex, a PCR-based method was used to classify 90 samples of nucleopolyhedrovirus (NPV; Baculoviridae: Alphabaculovirus) obtained worldwide from larvae of Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Partial nucleotide sequencing and phylogenetic analysis of three highly conserved genes (lef-8, lef-9, and polh) indicated that 67 of these samples contained isolates of the H. zea-H.

View Article and Find Full Text PDF