Many vaccines make use of an adjuvant to achieve stronger immune responses. Alternatively, potent immune responses have also been generated by replacing the standard needle and syringe (which places vaccine into muscle) with devices that deliver vaccine antigen to the skin's abundant immune cell population. However it is not known if the co-delivery of antigen plus adjuvant directly to thousands of skin immune cells generates a synergistic improvement of immune responses.
View Article and Find Full Text PDFDry-coated microprojections can deliver vaccine to abundant antigen-presenting cells in the skin and induce efficient immune responses and the dry-coated vaccines are expected to be thermostable at elevated temperatures. In this paper, we show that we have dramatically improved our previously reported gas-jet drying coating method and greatly increased the delivery efficiency of coating from patch to skin to from 6.5% to 32.
View Article and Find Full Text PDFBackground: Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin patch (Nanopatch™) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human papillomavirus (HPV) vaccine (Gardasil®) commonly used as a prophylactic vaccine against cervical cancer.
View Article and Find Full Text PDF