Publications by authors named "Holly C Hunsberger"

Background: Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms.

View Article and Find Full Text PDF

Background: Serotonin (5-HT) receptors and -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( , )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia.

Methods: A single injection of saline (Sal), ( , )-ketamine (K), prucalopride (P), or a combined dose of ( , )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes.

View Article and Find Full Text PDF

Benzodiazepines (BZDs) are anxiolytic drugs that act on GABAa receptors and are used to treat anxiety disorders. However, these drugs come with the detrimental side effect of anterograde amnesia, or the inability to form new memories. In this review we discuss, behavioral paradigms, sex differences and hormonal influences affecting BZD-induced amnesia, molecular manipulations, including the knockout of GABAa receptor subunits, and regional studies utilizing lesion and microinjection techniques targeted to the hippocampus and amygdala.

View Article and Find Full Text PDF

Introduction: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI.

View Article and Find Full Text PDF

Introduction: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI.

View Article and Find Full Text PDF
Article Synopsis
  • Aging affects men and women differently, but we don't fully understand how sex and gender impact the aging process.
  • A recent conference brought together experts to discuss these differences and suggest ways to improve research on how sex and gender influence health as we age.
  • The article provides recommendations for better research methods and collaboration to better understand the effects of sex and gender on health outcomes.
View Article and Find Full Text PDF

The greatest risk factor for developing Alzheimer's disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water.

View Article and Find Full Text PDF

Background: Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects.

View Article and Find Full Text PDF

In the United States, ~1.4 million individuals identify as transgender. Many transgender adolescents experience gender dysphoria related to incongruence between their gender identity and sex assigned at birth.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder and one of the leading causes of death in the United States. Although amyloid plaques and fibrillary tangles are hallmarks of AD, research suggests that pathology associated with AD often begins 20 or more years before symptoms appear. Therefore, it is essential to identify early-stage biomarkers in those at risk for AD and age-related cognitive decline (ARCD) in order to develop preventative treatments.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia affecting almost 50 million people worldwide. The ε4 allele of Apolipoprotein E (APOE) is the strongest known genetic risk factor for late-onset AD cases, with homozygous carriers being approximately 15-times more likely to develop the disease. With 25% of the population being carriers, understanding the role of this allele in AD pathogenesis and pathophysiology is crucial.

View Article and Find Full Text PDF

Individuals with peripheral inflammation are a particularly vulnerable population for developing depression and are also more resistant towards traditional antidepressants. This signals the need for novel drugs that can effectively treat this patient population. Recently, we have demonstrated that (R,S)-ketamine is a prophylactic against a variety of stressors, but have yet to test if it is protective against inflammatory-induced vulnerability to a stressor.

View Article and Find Full Text PDF

The aging population and those with amnestic mild cognitive impairment (aMCI) are at increased risk for developing Alzheimer's disease (AD). Individuals with aMCI in particular may display pathological changes in brain function that may ultimately result in a diagnosis of AD. This review focuses specifically on hippocampal hyperexcitability, a pathology that is sometimes detectable years before diagnosis, which has been observed in individuals with aMCI.

View Article and Find Full Text PDF

Neurotransmitter disruption is often a key component of diseases of the central nervous system (CNS), playing a role in the pathology underlying Alzheimer's disease, Parkinson's disease, depression, and anxiety. Traditionally, microdialysis has been the most common (lauded) technique to examine neurotransmitter changes that occur in these disorders. But because microdialysis has the ability to measure slow 1-20 minute changes across large areas of tissue, it has the disadvantage of invasiveness, potentially destroying intrinsic connections within the brain and a slow sampling capability.

View Article and Find Full Text PDF

Peripheral viral infections increase seizure propensity and intensity in susceptible individuals. We have modeled this comorbidity by demonstrating that the acute phase response instigated by an intraperitoneal (i.p.

View Article and Find Full Text PDF

Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling.

View Article and Find Full Text PDF

Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model.

View Article and Find Full Text PDF

Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear.

View Article and Find Full Text PDF

Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) are essential for several kinds of synaptic plasticity and play a critical role in learning and memory. Deficits in NMDAR functioning may be partially responsible for the learning and memory deficits associated with aging and numerous diseases. Administration of MK-801, a noncompetitive NMDAR antagonist, is commonly used as a preclinical model of NMDAR dysfunction.

View Article and Find Full Text PDF

Transgenic mice expressing mutations in tau have yielded essential discoveries for Alzheimer's disease. One of the most commonly used tau mouse models is the tet-off Tg(tauP301L)4510 model that expresses P301L human tau driven by the calcium-calmodulin kinase IIα (CaMKIIα) promoter system. Tau expression in this model is regulatable, allowing for suppression of mutant tau expression until adulthood and prevention of possible developmental alterations resulting from P301L tau expression during development.

View Article and Find Full Text PDF