Huntington's disease (HD) arises from a CAG expansion in the () gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant mRNA (m) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in 's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the brain and hold the promise of treating myriad brain diseases by modulating RNA. CNS tissue is not routinely biopsied in living individuals, leading to reliance on CSF biomarkers to inform on drug target engagement. Animal models can link CSF biomarkers to brain parenchyma, but our understanding of how individual cells contribute to bulk tissue signal is limited.
View Article and Find Full Text PDFHuntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains.
View Article and Find Full Text PDFPrion protein (PrP) concentration controls the kinetics of prion replication and is a genetically and pharmacologically validated therapeutic target for prion disease. In order to evaluate PrP concentration as a pharmacodynamic biomarker and assess its contribution to known prion disease risk factors, we developed and validated a plate-based immunoassay reactive for PrP across 6 species of interest and applicable to brain and cerebrospinal fluid (CSF). PrP concentration varied dramatically across different brain regions in mice, cynomolgus macaques, and humans.
View Article and Find Full Text PDFParkinson's disease (PD) is a prevalent neurodegenerative disease with no approved disease-modifying therapies. Multiplications, mutations, and single nucleotide polymorphisms in the SNCA gene, encoding α-synuclein (aSyn) protein, either cause or increase risk for PD. Intracellular accumulations of aSyn are pathological hallmarks of PD.
View Article and Find Full Text PDFThe genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing.
View Article and Find Full Text PDFSpinocerebellar ataxia type 1 (SCA1) is a lethal, autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in the ATAXIN-1 (ATXN1) protein. Preclinical studies demonstrate the therapeutic efficacy of approaches that target and reduce Atxn1 expression in a non-allele-specific manner. However, studies using Atxn1 mice raise cautionary notes that therapeutic reductions of ATXN1 might lead to undesirable effects such as reduction in the activity of the tumor suppressor Capicua (CIC), activation of the protease β-secretase 1 (BACE1) and subsequent increased amyloidogenic cleavage of the amyloid precursor protein (APP), or a reduction in hippocampal neuronal precursor cells that would impact hippocampal function.
View Article and Find Full Text PDFLowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts.
View Article and Find Full Text PDFHuntington disease (HD) is caused by a cytosine-adenine-guanine trinucleotide repeat expansion in the huntingtin gene, HTT, that results in expression of variant (mutant) huntingtin protein (HTT). Therapeutic strategies that reduce HTT levels are currently being pursued to slow or stop disease progression in people with HD. These approaches are supported by robust preclinical data indicating that reducing variant huntingtin protein is associated with decreased HD pathology.
View Article and Find Full Text PDFKnockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) designed to lower prion protein (PrP) expression in the brain through RNase H1-mediated degradation of PrP RNA are in development as prion disease therapeutics. ASOs were previously reported to sequence-independently interact with PrP and inhibit prion accumulation in cell culture, yet studies using a new generation of ASOs found that only PrP-lowering sequences were effective at extending survival. Cerebrospinal fluid (CSF) PrP has been proposed as a pharmacodynamic biomarker for trials of such ASOs, but is only interpretable if PrP lowering is indeed the relevant mechanism of action in vivo and if measurement of PrP is unconfounded by any PrP-ASO interaction.
View Article and Find Full Text PDFBackground: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in , resulting in a mutant huntingtin protein. IONIS-HTT (hereafter, HTT) is an antisense oligonucleotide designed to inhibit messenger RNA and thereby reduce concentrations of mutant huntingtin.
Methods: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease.
Ann Clin Transl Neurol
December 2018
Objectives: Clinical trials for progressive neurodegenerative disorders such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis have been hindered due to the absence of effective pharmacodynamics markers to assay target engagement. We tested whether measurements of new protein production would be a viable pharmacodynamics tool for RNA-targeted therapies.
Methods: Transgenic animal models expressing human proteins implicated in neurodegenerative disorders - microtubule-associated protein tau (hTau) or superoxide dismutase-1 (hSOD1) - were treated with antisense oligonucleotides (ASOs) delivered to the central nervous system to target these human mRNA transcripts.
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited ataxia caused by expansion of a translated CAG repeat encoding a glutamine tract in the ataxin-1 (ATXN1) protein. Despite advances in understanding the pathogenesis of SCA1, there are still no therapies to alter its progressive fatal course. RNA-targeting approaches have improved disease symptoms in preclinical rodent models of several neurological diseases.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT.
View Article and Find Full Text PDFMutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS.
View Article and Find Full Text PDFObjective: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease.
View Article and Find Full Text PDFThere is an urgent need for better treatments for chronic pain, which affects more than 1 billion people worldwide. Antisense oligonucleotides (ASOs) have proven successful in treating children with spinal muscular atrophy, a severe infantile neurological disorder, and several ASOs are currently being tested in clinical trials for various neurological disorders. Here, we characterize the pharmacodynamic activity of ASOs in spinal cord and dorsal root ganglia (DRG), key tissues for pain signaling.
View Article and Find Full Text PDFNo treatments exist to slow or halt Parkinson's disease (PD) progression; however, inhibition of leucine-rich repeat kinase 2 (LRRK2) activity represents one of the most promising therapeutic strategies. Genetic ablation and pharmacological LRRK2 inhibition have demonstrated promise in blocking α-synuclein (α-syn) pathology. However, LRRK2 kinase inhibitors may reduce LRRK2 activity in several tissues and induce systemic phenotypes in the kidney and lung that are undesirable.
View Article and Find Full Text PDF