Two novel carbazole-based compounds and were synthesised as potential candidates for application in organic electronics. The materials were fully characterised by NMR spectroscopy, mass spectrometry, FTIR, thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, and absorption and emission spectroscopy. Compounds and , both of which were amorphous solids, were stable up to 291 °C and 307 °C, respectively.
View Article and Find Full Text PDFExplosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking 'pristine' soils using explosives solutions.
View Article and Find Full Text PDFA new electrochemical method to detect and quantify the explosive compound 2,4,6-trinitrotoluene (TNT) in aqueous solutions is demonstrated. A disposable thin-film electrode modified with a droplet of a gel-polymer electrolyte (GPE) was immersed directly into samples of TNT at concentrations of 1-10 μg/mL. The GPE contained the hydrophobic room-temperature ionic liquid (RTIL) trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([P][NTf]) and the polymer poly(hexyl methacrylate).
View Article and Find Full Text PDFExplosives residues are often collected from explosion scenes, and from surfaces suspected of being in contact with explosives, by swabbing with solvent-wetted cotton swabs. It is vital that any explosives traces present on the swabs are successfully extracted and detected when received in a laboratory. However, a 2007 proficiency test initiated by the European Network of Forensic Science Institutes (ENFSI) Expert Working Group on Explosives involving TNT-spiked cotton swabs highlighted that explosives may not always be detected from such samples.
View Article and Find Full Text PDFIt can be very challenging to recover explosives traces from porous surfaces, such as clothing and car seats, compared to non-porous surfaces. The contact heater has been developed as a novel instrument designed to recover explosives traces from porous surfaces. Samples are taken by heating and drawing air across a surface, with the air flowing through a sampling cartridge containing adsorbent polymer beads, which act to trap any recovered explosive material.
View Article and Find Full Text PDF