Publications by authors named "Holliness Nose"

Background: The influence of hybrid solvation models on the molecular structures and vibrational characteristics of g-aminobutyric acid (GABA) and a-aminoisobutyric acid (AIB) zwitterions was assessed by employing a variety of Density Functional Theory (DFT). The quantum chemical methods included the B3LYP and B3PW91 hybrid functionals and the 6‑311++G(d,p) basis set.

Methods: The most stable conformation derived from the potential energy surface (PES) scans using the B3LYP/6-311++G(d,p) model chemistry for each studied molecule was predicted within a continuum environment represented by the COSMO and SMD solvation models.

View Article and Find Full Text PDF

The ground-state structures and sequential binding energies of the late first-row divalent transition metal cations to pyridine (Pyr) are determined using density functional theory (DFT) methods. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Calculations at B3LYP, BHandHLYP, and M06 levels of theory using 6-31G* and 6-311+G(2d,2p) basis sets are employed to determine the structures and theoretical estimates for the sequential binding energies of the M(2+)(Pyr)x complexes, where x = 1-6, respectively.

View Article and Find Full Text PDF

The third-sequential binding energies of the late first-row divalent transition-metal cations with 2,2'-bipyridine (Bpy) are determined using guided-ion-beam tandem mass spectrometry (GIBMS) techniques. The metal cations investigated include the late first-row divalent transition-metal cations, Fe , Co , Ni , Cu , and Zn . The kinetic-energy-dependent cross sections for collision-induced dissociation (CID) of the M (Bpy) complexes are analyzed to extract absolute 0 and 298 K bond dissociation energies (BDEs) for the loss of an intact Bpy ligand.

View Article and Find Full Text PDF

The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates.

View Article and Find Full Text PDF