Background: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1.
View Article and Find Full Text PDFIn contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT) is a neglected tropical disease, with a population of 70 million at risk. Current treatment options are limited. In the search for new therapeutics, the repurposing of the broad-spectrum antiprotozoal drug fexinidazole has completed Phase III trials with the anticipation that it will be the first oral treatment for HAT.
View Article and Find Full Text PDFA library of novel pyridylchalcones were synthesised and screened against Trypanosoma brucei rhodesiense. Eight were shown to have good activity with the most potent 8 having an IC value of 0.29 μM.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT) is a multi-stage disease that manifests in two stages; an early blood stage and a late stage when the parasite invades the central nervous system (CNS). In vivo study of the late stage has been limited as traditional methodologies require the removal of the brain to determine the presence of the parasites. Bioluminescence imaging is a non-invasive, highly sensitive form of optical imaging that enables the visualization of a luciferase-transfected pathogen in real-time.
View Article and Find Full Text PDFCurrent treatments for Human African Trypanosomiasis (HAT) are limited in their application, have undesirable dosing regimens and unsatisfactory toxicities highlighting the need for the development of a safer drug pipeline. Our medicinal chemistry programme in developing rapidly accessible and modifiable heterocyclic scaffolds led to the design and synthesis of novel substituted benzothiophenes, with 6-benzimidazol-1-ylbenzothiophene derivatives demonstrating significant antitrypanosomal activities (IC50 < 1 μM) against Trypanosoma brucei rhodesiense and no toxicity towards mammalian cells.
View Article and Find Full Text PDFObjectives: To optimize the Trypanosoma brucei brucei GVR35 VSL-2 bioluminescent strain as an innovative drug evaluation model for late-stage human African trypanosomiasis.
Methods: An IVIS® Lumina II imaging system was used to detect bioluminescent T. b.
Chronic Trypanosoma cruzi infections lead to cardiomyopathy in 20-30% of cases. A causal link between cardiac infection and pathology has been difficult to establish because of a lack of robust methods to detect scarce, focally distributed parasites within tissues. We developed a highly sensitive bioluminescence imaging system based on T.
View Article and Find Full Text PDFBackground: Human African trypanosomiasis is caused by infection with parasites of the Trypanosoma brucei species complex, and threatens over 70 million people in sub-Saharan Africa. Development of new drugs is hampered by the limitations of current rodent models, particularly for stage II infections, which occur once parasites have accessed the CNS. Bioluminescence imaging of pathogens expressing firefly luciferase (emission maximum 562 nm) has been adopted in a number of in vivo models of disease to monitor dissemination, drug-treatment and the role of immune responses.
View Article and Find Full Text PDFThe synthesis of a range of mono spiro and dispiro 1,2,4,5-tetraoxane dimers is described. Selected molecules were examined in in vitro assays to determine their antimalarial and anticancer potential. Our studies reveal that several molecules possess potent nanomolar antimalarial and single digit micromolar antiproliferative IC(50)s versus colon (HT29-AK and leukemia (HL60) cell lines.
View Article and Find Full Text PDFA noncovalent, water-soluble complex of amphotericin B (AMB) and poly(α-glutamic acid) (PGA), with AMB loadings ranging from 25 to 55% (wt/wt) using PGA with a molecular weight range of 50,000 to 70,000, was prepared as a potential new treatment for visceral leishmaniasis (VL). The AMB-PGA complex was shown to be as active as Fungizone (AMB deoxycholate) against intracellular Leishmania donovani amastigotes in differentiated THP-1 cells. The in vitro uptake of the AMB-PGA complex by differentiated THP-1 cells was similar to that of Fungizone and higher than that of AmBisome (liposomal AMB).
View Article and Find Full Text PDF