Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium -[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC.
View Article and Find Full Text PDFAcylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction.
View Article and Find Full Text PDFLiraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin in vivo and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by increasing albumin affinity and secure full stability against metabolic degradation. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue.
View Article and Find Full Text PDFAnalytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets.
View Article and Find Full Text PDFHere we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering and analytical ultracentrifugation studies confirmed that GI desB30 did not form dimers or hexamers, in contrast to human insulin.
View Article and Find Full Text PDFInsulin degludec, an engineered acylated insulin, was recently reported to form a soluble depot after subcutaneous injection with a subsequent slow release of insulin and an ultralong glucose-lowering effect in excess of 40 h in humans. We describe the structure, ligand binding properties, and self-assemblies of insulin degludec using orthogonal structural methods. The protein fold adopted by insulin degludec is very similar to that of human insulin.
View Article and Find Full Text PDFAn ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell.
View Article and Find Full Text PDFThe three PERIOD homologues mPER1, mPER2, and mPER3 constitute central components of the mammalian circadian clock. They contain two PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B), which mediate homo- and heterodimeric mPER-mPER interactions as well as interactions with transcription factors and kinases. Here we present crystal structures of PAS domain fragments of mPER1 and mPER3 and compare them with the previously reported mPER2 structure.
View Article and Find Full Text PDFThe mammalian cryptochromes mCRY1 and mCRY2 act as transcriptional repressors within the 24-h transcription-translational feedback loop of the circadian clock. The C-terminal tail and a preceding predicted coiled coil (CC) of the mCRYs as well as the C-terminal region of the transcription factor mBMAL1 are involved in transcriptional feedback repression. Here we show by fluorescence polarization and isothermal titration calorimetry that purified mCRY1/2CCtail proteins form stable heterodimeric complexes with two C-terminal mBMAL1 fragments.
View Article and Find Full Text PDFMembrane traffic between the trans-Golgi network (TGN) and endosomes is mediated in part by the assembly of clathrin-AP-1 adaptor complex-coated vesicles. This process involves multiple accessory proteins that directly bind to the ear domain of AP-1gamma via degenerate peptide motifs that conform to the consensus sequence diameterG(P/D/E)(diameter/L/M) (with diameter being a large hydrophobic amino acid). Recently, gamma-BAR (hereafter referred to as Gadkin for reasons explained below) has been identified as a novel AP-1 recruitment factor involved in AP-1-dependent endosomal trafficking of lysosomal enzymes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics.
View Article and Find Full Text PDFA quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His(260) in the chromophore-binding pocket such that either the delta-nitrogen (M-HSD) or the epsilon-nitrogen (M-HSE) carried a hydrogen.
View Article and Find Full Text PDFPERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal alpha-helices (alphaE and alphaF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix alphaF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the alphaF helix.
View Article and Find Full Text PDFViral attachment to specific host receptors is the first step in viral infection and serves an essential function in the selection of target cells. Mammalian reoviruses are highly useful experimental models for studies of viral pathogenesis and show promise as vectors for oncolytics and vaccines. Reoviruses engage cells by binding to carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A).
View Article and Find Full Text PDFStructural changes of the chromophore in phytochrome proteins associated with its photocycle are still not fully understood. We use heteronuclear NMR to investigate the conformation and dynamics of the chromophore in the binding pocket of the cyanobacterial phytochrome Cph1. On the basis of distance information obtained from three-dimensional nuclear Overhauser enhancement (3D-NOESY) spectra using the photochemically intact photosensory module of Cph1 we demonstrate that the chromophore is in the ZZZssa form in the P(r) (red absorbing form) state and the ZZEssa form in the P(fr) (far-red absorbing form) state of the protein.
View Article and Find Full Text PDFThe activation/inactivation cycle of STAT transcription factors entails their transition between different dimer conformations. Unphosphorylated STATs can dimerize in an antiparallel conformation via extended interfaces of the globular N-domains, whereas STAT activation triggers a parallel dimer conformation with mutual phosphortyrosine:SH2 domain interactions, resulting in DNA-binding and nuclear retention. However, despite the crucial role of STAT tyrosine phosphorylation in cytokine signaling, it has not been determined how this modification affects the stability and the conformational flexibility of STAT dimers.
View Article and Find Full Text PDFOPA1, a nuclear encoded mitochondrial protein causing autosomal dominant optic atrophy, is a key player in mitochondrial fusion and cristae morphology regulation. In the present study, we have compared the OPA1 transcription and translation products of different mouse tissues. Unlike in humans, we found only two exons (4b and 5b) to be involved in alternative splicing.
View Article and Find Full Text PDFThe optical setup and the performance of a prototype UV/Vis multiwavelength analytical ultracentrifuge (MWL-AUC) is described and compared to the commercially available Optima XL-A from Beckman Coulter. Slight modifications have been made to the optical path of the MWL-AUC. With respect to wavelength accuracy and radial resolution, the new MWL-AUC is found to be comparable to the existing XL-A.
View Article and Find Full Text PDFThe bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key enzyme for the biosynthesis of sialic acids, the terminal sugars of glycoconjugates associated with a variety of physiological and pathological processes such as cell adhesion, development, inflammation and cancer. In this study, we characterized rat GNE by different biophysical methods, analytical ultracentrifugation, dynamic light-scattering and size-exclusion chromatography, all revealing the native hydrodynamic behavior and molar mass of the protein. We show that GNE is able to reversibly self-associate into different oligomeric states including monomers, dimers and tetramers.
View Article and Find Full Text PDFSolid-state nuclear magnetic resonance (NMR) is applied for the first time to the photoreceptor phytochrome. The two stable states, Pr and Pfr, of the 59-kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 containing a uniformly 15N-labeled phycocyanobilin cofactor are explored by 15N cross-polarization (CP) magic-angle spinning (MAS) NMR.
View Article and Find Full Text PDFWe have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore-protein interactions. Cph1Delta2, the 514-residue N-terminal sensor module produced as a recombinant His6-tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full-length product. We generated 12 site-directed mutants of Cph1Delta2, focusing on conserved residues which might be involved in chromophore-protein autoassembly and photoconversion.
View Article and Find Full Text PDFPhytochromes, photoreceptors controlling important physiological processes in plants and many prokaryotes, are photochromic biliproteins. The red-absorbing Pr ground state is converted by light into the farred-absorbing Pfr which can be photoconverted back to Pr. In plants at least Pfr is the physiologically active signalling state.
View Article and Find Full Text PDFPrecise structural information regarding the chromophore binding pocket is essential for an understanding of photochromicity and photoconversion in phytochrome photoreceptors. To this end, we are studying the 59 kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 in both thermally stable forms (Pr and Pfr) using solution-state NMR spectroscopy.
View Article and Find Full Text PDF