Publications by authors named "Holger Sierks"

The goal of Project GAUSS (Genesis of Asteroids and evolUtion of the Solar System) is to return samples from the dwarf planet Ceres. Ceres is the most accessible candidate of ocean worlds and the largest reservoir of water in the inner Solar System. It shows active volcanism and hydrothermal activities in recent history.

View Article and Find Full Text PDF

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders.

View Article and Find Full Text PDF

Observations of comet nuclei indicate that the main constituent is a mix of ice and refractory materials characterized by high porosity (70-75%) and low bulk strength (10-10 MPa); however, the nature and physical properties of these materials remain largely unknown. By combining surface inspection of comet 67P/Churyumov-Gerasimenko and three-dimensional (3D) modeling of the independent concentric sets of layers that make up the structure of its two lobes, we provide clues about the large-scale rheological behavior of the nucleus and the kinematics of the impact that originated it. Large folds in the layered structure indicate that the merging of the two cometesimals involved reciprocal motion with dextral strike-slip kinematics that bent the layers in the contact area without obliterating them.

View Article and Find Full Text PDF

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe.

View Article and Find Full Text PDF

The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface.

View Article and Find Full Text PDF

The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters.

View Article and Find Full Text PDF

Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts.

View Article and Find Full Text PDF

Knowledge of the magnetization of planetary bodies constrains their origin and evolution, as well as the conditions in the solar nebular at that time. On the basis of magnetic field measurements during the descent and subsequent multiple touchdown of the Rosetta lander Philae on the comet 67P/Churyumov-Gerasimenko (67P), we show that no global magnetic field was detected within the limitations of analysis. The Rosetta Magnetometer and Plasma Monitor (ROMAP) suite of sensors measured an upper magnetic field magnitude of less than 2 nanotesla at the cometary surface at multiple locations, with the upper specific magnetic moment being <3.

View Article and Find Full Text PDF

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.

View Article and Find Full Text PDF

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently.

View Article and Find Full Text PDF

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

View Article and Find Full Text PDF

Multispectral images (0.44 to 0.98 μm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy.

View Article and Find Full Text PDF

The peculiar object P/2010 A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found.

View Article and Find Full Text PDF

Comets spend most of their life in a low-temperature environment far from the Sun. They are therefore relatively unprocessed and maintain information about the formation conditions of the planetary system, but the structure and composition of their nuclei are poorly understood. Although in situ and remote measurements have derived the global properties of some cometary nuclei, little is known about their interiors.

View Article and Find Full Text PDF

The OSIRIS cameras (optical, spectroscopic, and infrared remote imaging system) onboard the European Space Agency's Rosetta spacecraft observed comet 9P/Tempel 1 for 17 days continuously around the time of NASA's Deep Impact mission. The cyanide-to-water production ratio was slightly enhanced in the impact cloud, compared with that of normal comet activity. Dust particles were flowing outward in the coma at >160 meters per second, accelerated by the gas.

View Article and Find Full Text PDF