The CSF1R gene, located on chromosome 5, encodes a 108 kDa protein and plays a critical role in regulating myeloid cell function. Mutations in CSF1R have been identified as a cause of a rare white matter disease called adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP, also known as CSF1R-related leukoencephalopathy), characterized by progressive neurological dysfunction. This study aimed to broaden the genetic basis of ALSP by identifying novel CSF1R variants in patients with characteristic clinical and imaging features of ALSP.
View Article and Find Full Text PDFMutations in the gene (S phase Cyclin A-Associated Protein residing in the Endoplasmic Reticulum) have recently been associated with retinitis pigmentosa (RP) and intellectual disability (ID). In 2011, a possible involvement of in human diseases was discovered for the first time due to the identification of a homozygous mutation causing ID in an Iranian family. Later, five studies were published in 2019 that described patients with autosomal recessive syndromic retinitis pigmentosa (arRP) accompanied by ID and attention-deficit/hyperactivity disorder (ADHD).
View Article and Find Full Text PDFSolve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts.
View Article and Find Full Text PDFHereditary spastic paraplegia type 5 (SPG5) is an autosomal recessively inherited movement disorder characterized by progressive spastic gait disturbance and afferent ataxia. SPG5 is caused by bi-allelic loss of function mutations in CYP7B1 resulting in accumulation of the oxysterols 25-hydroxycholesterol and 27-hydroxycholesterol in serum and cerebrospinal fluid of SPG5 patients. An effect of 27- hydroxycholesterol via the estrogen and liver X receptors was previously shown on bone homeostasis.
View Article and Find Full Text PDFSpastic Ataxias (SA) are a group of neurodegenerative disorders with combined pyramidal and cerebellar system affection, leading to an overlap phenotype between Hereditary Spastic Paraplegias (HSP) and Cerebellar Ataxias (CA). Here we describe the generation of iPSCs from three unrelated patients with an ultra-rare subtype of SA caused by compound heterozygous mutations in POLR3A, that encodes the largest subunit of RNA polymerase III. iPSCs were reprogrammed from normal human dermal fibroblasts (NHDFs) using episomal reprogramming with integration-free plasmid vectors: HIHRSi004-A, derived from a 44 year-old male carrying the mutations c.
View Article and Find Full Text PDFMetachromatic leukodystrophy (MLD) is a rare genetic disorder caused by pathogenic variants of the ARSA gene, leading to a deficiency of the arylsulfatase A enzyme (ARSA) and consecutive accumulation of galactosylceramide-3-0-sulfate in the nervous system. The condition leads to severe neurological deficits and subsequently results in profound intellectual and motoric disability. Especially, the adult form of MLD, which occurs in individuals aged >16 years, poses significant challenges for treating physicians because of the rarity of cases, limited therapeutic options, and different allogeneic hematopoietic cell transplantation (allo-HCT) protocols worldwide.
View Article and Find Full Text PDFBackground And Purpose: Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals.
Methods: This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing.
Background: Non-motor symptoms (NMS) are a substantial burden for patients with SCA3. There are limited data on their frequency, and their relation with disease severity and activities of daily living is not clear. In addition, lifestyle may either influence or be affected by the occurrence of NMS.
View Article and Find Full Text PDFObjectives: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Subsequent accumulation of sulfatides leads to demyelination and neurodegeneration in the central and peripheral nervous system. To date MLD is classified based on the age at onset, however, especially for late onset forms this classification provides only limited projection regarding the clinical disease course.
View Article and Find Full Text PDFMeasures of step variability and body sway during gait have shown to correlate with clinical ataxia severity in several cross-sectional studies. However, to serve as a valid progression biomarker, these gait measures have to prove their sensitivity to robustly capture longitudinal change, ideally within short time frames (eg, 1 year). We present the first multicenter longitudinal gait analysis study in spinocerebellar ataxias.
View Article and Find Full Text PDFPurpose: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses.
Methods: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls.
This cohort study aimed to characterize the prodromal phase of hereditary spastic paraplegia type 4 (SPG4) using biomarkers and clinical signs and symptoms that develop before manifest gait abnormalities. Fifty-six first-degree relatives at risk of developing SPG4 underwent blinded genotyping and standardized phenotyping, including the Spastic Paraplegia Rating Scale (SPRS), complicating symptoms, non-motor affection, Three-Minute Walk, and neurophysiological assessment. Automated MR image analysis was used to compare volumetric properties.
View Article and Find Full Text PDFBackground And Objectives: Neurofilament light (NfL) appears to be a promising fluid biomarker in repeat-expansion spinocerebellar ataxias (SCAs), with piloting studies in mixed SCA cohorts suggesting that NfL might be increased at the ataxic stage of SCA type 1 (SCA1). We here hypothesized that NfL is increased not only at the ataxic stage of SCA1, but also at its (likely most treatment-relevant) preataxic stage.
Methods: We assessed serum NfL (sNfL) and CSF NfL (cNfL) levels in both preataxic and ataxic SCA1, leveraging a multicentric cohort recruited at 6 European university centers, and clinical follow-up data, including actually observed (rather than only predicted) conversion to the ataxic stage.
Objective: While the anticipated rise of disease-modifying therapies calls for reliable trial outcome parameters, fluid biomarkers are lacking in spastic paraplegia type 4 (SPG4), the most prevalent form of hereditary spastic paraplegia. We therefore investigated serum neurofilament light chain (sNfL) as a potential therapy response, diagnostic, monitoring, and prognostic biomarker in SPG4.
Methods: We assessed sNfL levels in 93 patients with SPG4 and 60 healthy controls.
Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically.
View Article and Find Full Text PDF