Publications by authors named "Holger H Buchholz"

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths.

View Article and Find Full Text PDF

The SAR11 clade are the most abundant members of surface marine bacterioplankton and a critical component of global biogeochemical cycles. Similarly, pelagiphages that infect SAR11 are ubiquitous and highly abundant in the oceans. Pelagiphages are predicted to shape SAR11 community structures and increase carbon turnover throughout the oceans.

View Article and Find Full Text PDF

The methylotrophic OM43 clade are that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry.

View Article and Find Full Text PDF

We present the genomes of two isolated bacteriophages infecting HTCC1062. phage Mosig EXVC030M () and phage Lederberg EXVC029P () were isolated by dilution-to-extinction culturing from the oxygen minimum zone at Devil's Hole (Harrington Sound, Bermuda).

View Article and Find Full Text PDF

Microbes and their associated viruses are key drivers of biogeochemical processes in marine and soil biomes. While viruses of phototrophic cyanobacteria are well-represented in model systems, challenges of isolating marine microbial heterotrophs and their viruses have hampered experimental approaches to quantify the importance of viruses in nutrient recycling. A resurgence in cultivation efforts has improved the availability of fastidious bacteria for hypothesis testing, but this has not been matched by similar efforts to cultivate their associated bacteriophages.

View Article and Find Full Text PDF

Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean.

View Article and Find Full Text PDF