Publications by authors named "Holger Gies"

We show that coherent harmonic focusing provides an efficient mechanism to boost all-optical signatures of quantum vacuum nonlinearity in the collision of high-intensity laser fields, thereby offering a promising route to their first experimental detection. Assuming two laser pulses of given parameters at our disposal, we demonstrate a substantial increase of the number of signal photons measurable in experiments where one of the pulses undergoes coherent harmonic focusing before it collides with the fundamental-frequency pulse. Imposing a quantitative criterion to discern the signal photons from the background of the driving laser photons and accounting for the finite purity of polarization filtering, we find that signal photons arising from inelastic scattering processes constitute a promising signature.

View Article and Find Full Text PDF

We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.

View Article and Find Full Text PDF

Noncollinear pulse characterization methods can be applied to over-octave spanning waveforms, but geometrical effects in the nonlinear medium such as beam smearing and critical sensitivity to beam alignment hinder their accurate application. Here, a method is introduced for the temporal and spatial characterization of two pulses by interferometric, spectrally resolved imaging of self-diffraction. Geometrical effects are resolved by the method and, therefore, do not limit the accuracy.

View Article and Find Full Text PDF

Weinberg's asymptotic safety scenario provides an elegant mechanism to construct a quantum theory of gravity within the framework of quantum field theory based on a non-Gaussian fixed point of the renormalization group flow. In this work we report novel evidence for the validity of this scenario, using functional renormalization group techniques to determine the renormalization group flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling constants and exhibits a non-Gaussian fixed point which constitutes the natural extension of the one found at the level of the Einstein-Hilbert action.

View Article and Find Full Text PDF

We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws.

View Article and Find Full Text PDF

Electron-positron pair production in oscillating electric fields is investigated in the nonperturbative threshold regime. Accurate numerical solutions of quantum kinetic theory for corresponding observables are presented and analyzed in terms of a proposed model for an effective mass of electrons and positrons acquired within the given strong electric field. Although this effective mass cannot provide an exact description of the collective interaction of a charged particle with the strong field, physical observables are identified which carry direct and sensitive signatures of the effective mass.

View Article and Find Full Text PDF

We show that magnetic fields significantly enhance a new tunneling mechanism in quantum field theories with photons coupling to fermionic minicharged particles (MCPs). We propose a dedicated laboratory experiment of the light-shining-through-walls type that can explore a parameter regime comparable to and even beyond the best model-independent cosmological bounds. With present-day technology, such an experiment is particularly sensitive to MCPs with masses in and below the meV regime as suggested by new-physics extensions of the standard model.

View Article and Find Full Text PDF

We review the functional renormalization group (RG) approach to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BCS-BEC) crossover for an ultracold gas of fermionic atoms. Formulated in terms of a scale-dependent effective action, the functional RG interpolates continuously between the atomic or molecular microphysics and the macroscopic physics on large length scales. We concentrate on the discussion of the phase diagram as a function of the scattering length and the temperature, which is a paradigm example for the non-perturbative power of the functional RG.

View Article and Find Full Text PDF

The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature.

View Article and Find Full Text PDF

We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism.

View Article and Find Full Text PDF

We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions.

View Article and Find Full Text PDF

Possible extensions of the standard model of particle physics suggest the existence of particles with small, unquantized electric charge. Photon-initiated pair production of millicharged fermions in a magnetic field would manifest itself as a vacuum magnetic (VM) dichroism. We show that laser polarization experiments searching for this effect yield, in the mass range below 0.

View Article and Find Full Text PDF

We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.

View Article and Find Full Text PDF

We investigate textbook QED in the framework of the exact renormalization group. In the strong-coupling region, we study the influence of fluctuation-induced photonic and fermionic self-interactions on the nonperturbative running of the gauge coupling. Our findings confirm the triviality hypothesis of complete charge screening if the ultraviolet cutoff is sent to infinity.

View Article and Find Full Text PDF