The pharmaceutical and cosmetic industries are encountering a challenge in adopting new study models for product development. there has been a growing interest in organ-on-a-chip systems, and particularly for generating skin models. While numerous alternatives replicating high-fidelity skin models exist, there is a notable absence of melanoma study's methodology specifically on these microfluidic chips.
View Article and Find Full Text PDFBackground: The objective of the Argentine Global Matrix 4.0 Report Card was to synthesize the available national evidence on topics related to physical activity and health of children and adolescents and, based on that evidence, to assign a grade to some related indicators.
Methods: The Report Card working group reviewed and compiled the best available evidence on the indicators developed by Active Healthy Kids Global Alliance.
The search for biomarkers for the early diagnosis of neurodegenerative diseases is a growing area. Numerous investigations are exploring minimally invasive and cost-effective biomarkers, with the detection of phosphorylated Tau (pTau) protein emerging as one of the most promising fields. pTau is the main component of the paired helical filaments found in the brains of Alzheimer's disease cases and serves as a precursor in the formation of neurofibrillary tangles (NFTs).
View Article and Find Full Text PDFAnalytical detection methods play a pivotal role in scientific research, enabling the identification and quantification of specific analytes in various disciplines. This scientific report aims to compare two very different methodologies for determining the Molecular Mass (MM, also known as Molecular Weight, MW) of proteins: electrophoresis gel and the Interferometric Optical Detection Method (IODM). For this purpose, several proteins with different MM were selected.
View Article and Find Full Text PDFAntibody biotinylation is a process of attaching biotin molecules to antibodies by chemically modifying specific functional groups on the antibodies without altering their antigen recognition specificity. Biotin, a small vitamin, forms a strong and specific interaction with the protein streptavidin, resulting in a stable biotin-streptavidin (biotin-STV) complex. This biotin-STV interaction is widely exploited in various biotechnological applications, including biosensors.
View Article and Find Full Text PDFWe report for the first time the whole development of a biosensing system based on the Interferometric Optical Detection Method (IODM) enriched with gold nanoparticles (AuNPs), acting as interferometric enhancers for improving the performance of immunoassays. For this purpose, the Lactoferrin sandwich immunoassay model was employed. We describe in detail the entire value chain from the AuNPs production, its functionalization, and characterization with anti-Lactoferrin (anti-LF), the biosensing response of these conjugates as well as their corresponding calculation of the kinetic constants, performance comparison of the readout interferometric signals Scanning Electron Microscopy (SEM) and the percentage of the sensing surface covered.
View Article and Find Full Text PDFIn this scientific work, we demonstrate, for the first time, a new biosensing system and procedure to measure specifically the total Tau (T-Tau) protein in serum, one of the most relevant biomarkers of Alzheimer's disease (AD). AD is a progressive brain disorder that produces neuronal and cognitive dysfunction and affects a high percentage of people worldwide. For this reason, diagnosing AD at the earliest possible stage involves improving diagnostic systems.
View Article and Find Full Text PDFSpondylodiscitis is a pathology with a devastating potential for functional limitation in patients, which may involve immobilization for months due to the risk of compression or even spinal cord section. It is a rare type of infection occurring in the vertebrae and discs of the spine, and most are bacterial. Fungal cases are rare.
View Article and Find Full Text PDFGalaxy mergers produce pairs of supermassive black holes (SMBHs), which may be witnessed as dual quasars if both SMBHs are rapidly accreting. The kiloparsec (kpc)-scale separation represents a physical regime sufficiently close for merger-induced effects to be important yet wide enough to be directly resolvable with the facilities currently available. Whereas many kpc-scale, dual active galactic nuclei-the low-luminosity counterparts of quasars-have been observed in low-redshift mergers, no unambiguous dual quasar is known at cosmic noon (z ≈ 2), the peak of global star formation and quasar activity.
View Article and Find Full Text PDFDespite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market.
View Article and Find Full Text PDFIn the present work, highly multiplexed diagnostic KITs based on an Interferometric Optical Detection Method (IODM) were developed to evaluate six Coronavirus Disease 2019 (COVID-19)-related biomarkers. These biomarkers of COVID-19 were evaluated in 74 serum samples from severe, moderate, and mild patients with positive polymerase chain reaction (PCR), collected at the end of March 2020 in the Hospital Clínico San Carlos, in Madrid (Spain). The developed multiplexed diagnostic KITs were biofunctionalized to simultaneously measure different types of specific biomarkers involved in COVID-19.
View Article and Find Full Text PDFLung-resident memory B cells (MBCs) provide localized protection against reinfection in respiratory airways. Currently, the biology of these cells remains largely unexplored. Here, we combined influenza and SARS-CoV-2 infection with fluorescent-reporter mice to identify MBCs regardless of antigen specificity.
View Article and Find Full Text PDFMouse brain slices are one of the most common models to study brain development and functioning, increasing the number of study models that integrate microfluidic systems for hippocampal slice cultures. This report presents an alternative brain slice-on-a-chip, integrating an injection system inside the chip to dispense a fluorescent dye for long-term monitoring. Hippocampal slices have been cultured inside these chips, observing fluorescence signals from living cells, maintaining the cytoarchitecture of the slices.
View Article and Find Full Text PDFWe developed a new label-free assay to evaluate the inhibition capacity of AX-024 by means of a new Point-of-Care (PoC) device for application in the development of new drugs in autoimmune diseases. The technology of PoC is based on interferometric optical detection method (IODM). For this purpose, we have optimized and developed an assay protocol whereby a Glutathione S-Transferase modified protein (GST-SH3.
View Article and Find Full Text PDFThe bioreceptor immobilization process (biofunctionalization) turns to be one of the bottlenecks when developing a competent and high sensitivity label-free biosensor. Classical approaches seem to be effective but not efficient. Although biosensing capacities are shown in many cases, the performance of the biosensor is truncated by the inefficacious biofunctionalization protocol and the lack of reproducibility.
View Article and Find Full Text PDFBackground: Most children and youth develop mild or asymptomatic disease during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, a very small number of patients suffer severe Coronavirus induced disease 2019 (COVID-19). The reasons underlying these different outcomes remain unknown.
View Article and Find Full Text PDFThe standard rapid approach for the diagnosis of coronavirus disease 2019 (COVID-19) is the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The detection of specific anti-SARS-CoV-2 immunoglobulins is crucial for screening people who have been exposed to the virus, whether or not they presented symptoms. Recent publications report different methods for the detection of specific IgGs, IgMs, and IgAs against SARS-CoV-2; these methods mainly detect immunoglobulins in the serum using conventional techniques such as rapid lateral flow tests or enzyme-linked immunosorbent assay (ELISA).
View Article and Find Full Text PDFMicrofluidic-based tissues-on-chips (TOCs) have thus far been restricted to modelling simple epithelia as a single cell layer, but likely due to technical difficulties, no TOCs have been reported to include both an epithelial and a stromal component despite the biological importance of the stroma for the structure and function of human tissues. We present, for the first time, a novel approach to generate 3D multilayer tissue models in microfluidic platforms. As a proof of concept, we modelled skin, including a dermal and an epidermal compartment.
View Article and Find Full Text PDFThis work presents a new, cost-effective, and reliable microfluidic platform with the potential to generate complex multilayered tissues. As a proof of concept, a simplified and undifferentiated human skin containing a dermal (stromal) and an epidermal (epithelial) compartment has been modelled. To accomplish this, a versatile and robust, vinyl-based device divided into two chambers has been developed, overcoming some of the drawbacks present in microfluidic devices based on polydimethylsiloxane (PDMS) for biomedical applications, such as the use of expensive and specialized equipment or the absorption of small, hydrophobic molecules and proteins.
View Article and Find Full Text PDFCultured neuronal networks (CNNs) are a robust model to closely investigate neuronal circuits' formation and monitor their structural properties evolution. Typically, neurons are cultured in plastic plates or, more recently, in microfluidic platforms with potentially a wide variety of neuroscience applications. As a biological protocol, cell culture integration with a microfluidic system provides benefits such as accurate control of cell seeding area, culture medium renewal, or lower exposure to contamination.
View Article and Find Full Text PDFBackground: Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19.
Methods: An observational study including 182 children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children was performed in Buenos Aires, Argentina.
Background: Most patients with respiratory syncytial virus (RSV) infection requiring hospitalization have no risk factors for severe disease. Genetic variation in the receptor for the Fc portion of IgG (FcγR) determines their affinity for IgG subclasses driving innate and adaptive antiviral immunity. We investigated the relationship between FcγRIIa-H131R polymorphism and RSV disease.
View Article and Find Full Text PDFIn this work, it is reported for the first time the use of a network of periodic optical resonant nanopillars for sensing vapors of volatile organic components. In particular, this work evaluates the presence of methanol, ethanol, isopropanol, acetic acid, propionic acid, and toluene vapors at different working distances between the transducer and the surface of the sample in the liquid state, obtaining the sensing curve response of each one of them. In addition, it studies the thin film of liquid condensed onto the nanopillar surface, estimating their corresponding thickness value by means of numerical photonic simulations and their correlation with the corresponding vapor pressure of different specimens.
View Article and Find Full Text PDFFood allergens cause worldwide chronic diseases with a great impact on public health. Immunoglobulins E (IgEs) trigger allergic reactions by specifically binding the allergens to which the allergic patients are sensitized. In this scientific work we report for the first time a new optical interferometric in vitro system for the detection of specific IgEs (sIgEs) to the principal peach allergen (Pru p 3) in real serum samples.
View Article and Find Full Text PDFInterferon-gamma (IFN-γ) is a cytokine associated with inflammatory diseases, virus, infection, etc. The quantification of interferon-gamma concentration levels is studied to relate the immune system response to the progression of disease. In this work, we used a label-free point-of-care device based on the increase relative optical power (IROP) and a biosensor based on photonic transducers called BICELLs (Biophotonic Sensing Cells) to evaluate interferon-gamma concentrations.
View Article and Find Full Text PDF