Publications by authors named "Holden C Williams"

The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest risk allele associated with the development of late onset Alzheimer's disease (AD). Across the CNS, astrocytes are the predominant expressor of while also being critical mediators of neuroinflammation and cerebral metabolism. APOE4 has been consistently linked with dysfunctional inflammation and metabolic processes, yet insights into the molecular constituents driving these responses remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) risk is influenced by genetics, specifically the apolipoprotein E (APOE) genotype, and the study investigates its impact on a mouse model's olfactory system.* -
  • The research utilized various methods including RNA-Seq and immunohistochemistry, revealing differences in gene expression between mice with APOE E3 and E4 alleles at 6 months, indicating development differences but no immediate effect on cell respiration.* -
  • Findings suggest that while olfactory neuron apoptosis remains consistent at 6 months, it increases in E4 mice by 10 months, highlighting the olfactory epithelium's potential as a model to study how APOE alleles influence age-related AD progression
View Article and Find Full Text PDF

Background: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

Methods: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

View Article and Find Full Text PDF

Despite the known deleterious effects of obesity, clinical data indicate that overweight or obese patients experience higher rates of sepsis survival compared to normal and underweight patients; a phenomenon called the obesity paradox. Results from preclinical sepsis studies have not been able to replicate these findings. The objective of this study was to test the existence of the obesity paradox in a murine model of cecal slurry (CS)-induced sepsis with insulin-resistant diet-induced obese mice.

View Article and Find Full Text PDF

Stable isotope-resolved metabolomics (SIRM) is a powerful tool for understanding disease. Advances in SIRM techniques have improved isotopic delivery and expanded the workflow from exclusively in vitro applications to in vivo methodologies to study systemic metabolism. Here, we report a simple, minimally-invasive and cost-effective method of tracer delivery to study SIRM in vivo in laboratory mice.

View Article and Find Full Text PDF

The Apolipoprotein E (APOE) gene is a major genetic risk factor associated with Alzheimer's disease (AD). APOE encodes for three main isoforms in humans (E2, E3, and E4). Homozygous E4 individuals have more than a 10-fold higher risk for developing late-onset AD, while E2 carriers are protected.

View Article and Find Full Text PDF

Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer's Disease (AD), and is associated with impairments in cerebral metabolism and cerebrovascular function. A substantial body of literature now points to E4 as a driver of multiple impairments seen in AD, including blunted brain insulin signaling, mismanagement of brain cholesterol and fatty acids, reductions in blood brain barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been instrumental in characterizing these metabolic and vascular deficits associated with this important AD risk factor.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu9mrup6gtrs00d443nmpr406d3r0ef36): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once