The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX).
View Article and Find Full Text PDFAtmospheric water harvesting (AWH) is a possible solution for the current water crisis on the Earth, and the key process of AWH has been widely applied in commercial dehumidifiers. To improve the energy efficiency of the AWH process, applying a superhydrophobic surface to trigger coalescence-induced jumping could be a promising technique that has attracted extensive interest. While most previous studies focused on optimizing the geometric parameters such as nanoscale surface roughness (<1 μm) or microscale structures (10 μm to a few hundred μm range), which might enhance AWH, here, we report a simple and low-cost approach for superhydrophobic surface engineering, through alkaline oxidation of copper.
View Article and Find Full Text PDFThe direct utilization of metal-organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure.
View Article and Find Full Text PDF