Halophenols are toxic and persistent pollutants in water environments which poses harm to various organisms. Due to their high stability and long residence time, ultraviolet radiation, heavy metals and oxidizing agents have been largely adopted on treating these compounds. However, these treatment methods could pose toxicity or hazardous risks to the marine environment and plant operators.
View Article and Find Full Text PDFThis research article uses density functional theory (DFT) to study photoinduced borylation. This work examined the electron donor-acceptor complex (EDA) of bis(catecholato)diboron with different redox-active leaving groups and bis(pinacol)diboron with aryl N-hydroxyphthalimide. The results of these DFT studies show the complex ratio of Bcat and N, N-dimethylacetamide (DMA) should be 1 : 2 which is consistent with the experimental results in the literature.
View Article and Find Full Text PDFThe 3-hydroxyflavone (3-HF) is one of the common fluorescence probes. It has two distinct fluorescence bands: normal form and tautomer form. However, 3-hydroxyflavone has poor performance in water because of hydrogen bonding perturbation.
View Article and Find Full Text PDFExcited state intramolecular proton transfer (ESIPT) in 3-hydroxyflavone (3HF) has been known for its dependence on excitation wavelength. Such a behavior violates Kasha's rule, which states that the emission and photochemistry of a compound would only take place from its lowest excited state. The photochemistry of 3HF was studied using femtosecond transient absorption spectroscopy at a shorter wavelength excitation (266 nm), and these new experimental findings were interpreted with the aid of computational studies.
View Article and Find Full Text PDFPhotosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography using an X-ray free-electron laser to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light.
View Article and Find Full Text PDFOwing to the ultrafast time scale of the photoinduced reaction and high degree of spectral overlap among the reactant, product, and excited electronic states in bacteriorhodopsin (bR), it has been a challenge for traditional spectroscopies to resolve the interplay between vibrational dynamics and electronic processes occurring in the retinal chromophore of bR. Here, we employ ultrafast two-dimensional electronic photon echo spectroscopy to follow the early excited-state dynamics of bR preceding the isomerization. We detect an early periodic photoinduced absorptive signal that, employing a hybrid multiconfigurational quantum/molecular mechanical model of bR, we attribute to periodic mixing of the first and second electronic excited states (S and S, respectively).
View Article and Find Full Text PDFPhotoactivation in the Photoactive Yellow Protein, a bacterial blue-light photoreceptor, proceeds via photoisomerization of the double C═C bond in the covalently attached chromophore. Quantum chemistry calculations, however, have suggested that in addition to double-bond photoisomerization, the isolated chromophore and many of its analogues can isomerize around a single C-C bond as well. Whereas double-bond photoisomerization has been observed with X-ray crystallography, experimental evidence of single-bond photoisomerization is currently lacking.
View Article and Find Full Text PDFThe effect of ring substitution on the kinetics of reaction of arenes, heterocycles, and alkenes with hydroxyl radical is investigated in terms of reactivity and selectivity, using laser flash photolysis (LFP) in acetonitrile solution. The LFP data indicate that charge-transfer contributions in the transition state play an important role in dictating reactivity, and there is a correlation between the experimental and calculated ionization potentials of the arenes and alkenes and their respective reactivities. The reactivity observed for arenes in acetonitrile exhibits a much greater sensitivity toward substitution on the ring than in water, and therefore aqueous data cannot be used to predict reactivity in nonaqueous environments.
View Article and Find Full Text PDFUltrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2017
When photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control.
View Article and Find Full Text PDFLake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with increasing habitat depth.
View Article and Find Full Text PDFWe report on a prototype protocol for the automatic and fast construction of congruous sets of QM/MM models of rhodopsin-like photoreceptors and of their mutants. In the present implementation the information required for the construction of each model is essentially a crystallographic structure or a comparative model complemented with information on the protonation state of ionizable side chains and distributions of external counterions. Starting with such information, a model formed by a fixed environment system, a flexible cavity system, and a chromophore system is automatically generated.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2016
While the light-induced population dynamics of different photoresponsive proteins has been investigated spectroscopically, systematic computational studies have not yet been possible due to the phenomenally high cost of suitable high level quantum chemical methods and the need of propagating hundreds, if not thousands, of nonadiabatic trajectories. Here we explore the possibility of studying the photodynamics of rhodopsins by constructing and investigating quantum mechanics/molecular mechanics (QM/MM) models featuring reduced retinal chromophores. In order to do so we use the sensory rhodopsin found in the cyanobacterium Anabaena PCC7120 (ASR) as a benchmark system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
The functions of microbial and animal rhodopsins are triggered by the isomerization of their all-trans and 11-cis retinal chromophores, respectively. To lay the molecular basis driving the evolutionary transition from the all-trans to the 11-cis chromophore, multiconfigurational quantum chemistry is used to compare the isomerization mechanisms of the sensory rhodopsin from the cyanobacterium Anabaena PCC 7120 (ASR) and of the bovine rhodopsin (Rh). It is found that, despite their evolutionary distance, these eubacterial and vertebrate rhodopsins start to isomerize via distinct implementations of the same bicycle-pedal mechanism originally proposed by Warshel [Warshel A (1976) Nature 260:678-683].
View Article and Find Full Text PDFThis article reports a study of excited-state hydroxide ion release from a model xanthenol photobase, XanOH. The driving force for the reaction was tuned using solvent mixtures with varying water/acetonitrile ratios, and the kinetics of the reaction was monitored using ultrafast pump-probe spectroscopy. The intrinsic barrier for the heterolysis was evaluated using Marcus and bond-energy bond-order (BEBO) models.
View Article and Find Full Text PDFReinvestigation of the thermolysis of azido-meta-hemipinate (I) yielded, in addition to known II, unusual products III and IV. These products are formed via a rare intramolecular nitrene insertion into an adjacent methoxy C-H bond followed by an intermolecular reaction during a ring-expansion and a ring-extrusion reaction followed by a carbene insertion. The structures of the new compounds were confirmed using a battery of techniques, including HRMS (ESI-QTOF) and 2D NMR as well as X-ray crystallography for compound IV.
View Article and Find Full Text PDFThe photochemistry of 4,5-carbomethoxy-1,2,3-thiadiazole in solution was studied at room temperature with use of UV-vis and IR transient absorption spectroscopies (λ(ex) = 266 nm). Ultrafast time-resolved techniques demonstrate that there is a very fast rise (<0.4 ps) of bis(carbomethoxy)thiirene in acetonitrile, and that it is the only intermediate formed.
View Article and Find Full Text PDFThe excited-state hydride release from 10-methyl-9-phenyl-9,10-dihydroacridine (PhAcrH) was investigated using steady-state and time-resolved UV/vis absorption spectroscopy. Upon excitation, PhAcrH is oxidized to the corresponding iminium ion (PhAcr(+)), while the solvent (acetonitrile/water mixture) is reduced (52% of PhAcr(+) and 2.5% of hydrogen is formed).
View Article and Find Full Text PDFThe photochemistry of diazocyclohexadienone (1), o-phenylene thioxocarbonate (2), and 2-chlorophenol (3) in solution was studied using time-resolved UV-vis and IR transient absorption spectroscopies. In these three cases, the same product cyclopentadienyl ketene (5) is formed, and two different mechanistic pathways leading to this product are discussed: (a) rearrangement in the excited state (RIES) and (b) a stepwise route involving the intermediacy of vibrationally excited or relaxed carbene. Femtosecond UV-vis detection allows observation of an absorption band assigned to singlet 2-oxocyclohexa-3,5-dienylidene (4), and this absorption feature decays with an ∼30 ps time constant in hexane and acetonitrile.
View Article and Find Full Text PDFThe excited-state behavior of 9-hydroxy-10-methyl-9-phenyl-9,10-dihydroacridine and its derivative, 9-methoxy-10-methyl-9-phenyl-9,10-dihydroacridine (AcrOR, R = H, Me), was studied via femtosecond and nanosecond UV-vis transient absorption spectroscopy. The solvent effects on C-O bond cleavage were clearly identified: a fast heterolytic cleavage (τ = 108 ps) was observed in protic solvents, while intersystem crossing was observed in aprotic solvents. Fast heterolysis generates 10-methyl-9-phenylacridinium (Acr(+)) and (-)OH, which have a long recombination lifetime (no signal decay was observed within 100 μs).
View Article and Find Full Text PDFThe photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile.
View Article and Find Full Text PDFThe photochemistry of 2-naphthylsulfonyl azide (2-NpSO(2)N(3)) was studied by femtosecond time-resolved infrared (TR-IR) spectroscopy and with quantum chemical calculations. Photolysis of 2-NpSO(2)N(3) with 330 nm light promotes 2-NpSO(2)N(3) to its S(1) state. The S(1) excited state has a prominent azide vibrational band.
View Article and Find Full Text PDFA time-resolved resonance Raman (TR(3)) and computational investigation of the photochemistry of 4-acetamidophenyl azide and 4-N-methylacetamidophenyl azide in acetonitrile is presented. Photolysis of 4-acetamidophenyl azide appears to initially produce singlet 4-acetamidophenylnitrene which undergoes fast intersystem crossing (ISC) to form triplet 4-acetamidophenylnitrene. The latter species formally produces 4,4'-bisacetamidoazobenzene.
View Article and Find Full Text PDFThe photochemistry of 2-naphthoyl azide was studied in various solvents by femtosecond time-resolved transient absorption spectroscopy with IR and UV-vis detection. The experimental findings were interpreted with the aid of computational studies. Using polar and nonpolar solvents, the formation and decay of the first singlet excited state (S(1)) was observed by both time-resolved techniques.
View Article and Find Full Text PDFCarboethoxycarbene reacts with methanol-OD to form an ylide. The formation and decay of this ylide was monitored by ultrafast time-resolved IR spectroscopy. The formation and decay of the ylide is linearly dependent on the concentration of methanol-OD in acetonitrile with second-order rate constants of ylide formation (8.
View Article and Find Full Text PDF