Proc Natl Acad Sci U S A
October 2009
We know a great deal about the cellular response to starvation via AMPK, but less is known about the reaction to nutrient excess. Insulin resistance may be an appropriate response to nutrient excess, but the cellular sensors that link these parameters remain poorly defined. In the present study we provide evidence that mitochondrial superoxide production is a common feature of many different models of insulin resistance in adipocytes, myotubes, and mice.
View Article and Find Full Text PDFInsulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane in muscle and fat cells depends on the phosphatidylinositide 3-kinase/Akt pathway. The downstream target AS160/TBC1D4 is phosphorylated upon insulin stimulation and contains a TBC domain (Tre-2/Bub2/Cdc16) that is present in most Rab guanosine triphosphatase-activating proteins. TBC1D4 associates with GLUT4-containing membranes under basal conditions and dissociates from membranes with insulin.
View Article and Find Full Text PDFInsulin resistance is a common disorder caused by a wide variety of physiological insults, some of which include poor diet, inflammation, anti-inflammatory steroids, hyperinsulinemia, and dyslipidemia. The common link between these diverse insults and insulin resistance is widely considered to involve impaired insulin signaling, particularly at the level of the insulin receptor substrate (IRS). To test this model, we utilized a heterologous system involving the platelet-derived growth factor (PDGF) pathway that recapitulates many aspects of insulin action independently of IRS.
View Article and Find Full Text PDFFour cucurbitane glycosides, momordicosides Q, R, S, and T, and stereochemistry-established karaviloside XI, were isolated from the vegetable bitter melon (Momordica charantia). These compounds and their aglycones exhibited a number of biologic effects beneficial to diabetes and obesity. In both L6 myotubes and 3T3-L1 adipocytes, they stimulated GLUT4 translocation to the cell membrane--an essential step for inducible glucose entry into cells.
View Article and Find Full Text PDFAlthough interleukin-6 (IL-6) has been associated with insulin resistance, little is known regarding the effects of IL-6 on insulin sensitivity in humans in vivo. Here, we show that IL-6 infusion increases glucose disposal without affecting the complete suppression of endogenous glucose production during a hyperinsulinemic-euglycemic clamp in healthy humans. Because skeletal muscle accounts for most of the insulin-stimulated glucose disposal in vivo, we examined the mechanism(s) by which IL-6 may affect muscle metabolism using L6 myotubes.
View Article and Find Full Text PDFBerberine has been shown to have antidiabetic properties, although its mode of action is not known. Here, we have investigated the metabolic effects of berberine in two animal models of insulin resistance and in insulin-responsive cell lines. Berberine reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in db/db mice.
View Article and Find Full Text PDFBlood Coagul Fibrinolysis
September 1999
A method for detecting activated protein C (APC)-resistant factor V, especially factor V Leiden, is described, which uses reagents containing two unfractionated snake venoms. The procedure can be used for testing plasma samples from patients receiving oral anticoagulant therapy, heparin therapy and patients with lupus anticoagulant, and does not require the use of factor-V-deficient plasma. The sample plasma is first incubated with dilute venom from Agkistrodon contortrix contortrix (Southern Copperhead) which activates the endogenous protein C and then a dilute Russell's viper venom time test is performed.
View Article and Find Full Text PDF