Publications by authors named "Hohert G"

Optical coherence tomography (OCT) is becoming a more common endoscopic imaging modality for detecting and treating disease given its high resolution and image quality. To use OCT for 3-dimensional imaging of small lumen, embedding an optical scanner at the distal end of an endoscopic probe for circumferential scanning the probing light is a promising way to implement high-quality imaging unachievable with the conventional method of revolving an entire probe. To this end, the present work proposes a hollow and planar micro rotary actuator for its use as an endoscopic distal scanner.

View Article and Find Full Text PDF

Multimodal endoscopic optical coherence tomography (OCT) can be implemented with double-clad fiber by using the presumed single-mode core for OCT and the higher numerical aperture cladding for a secondary modality. However, the quality of OCT in double-clad fiber (DCF) based systems is compromised by the introduction of multipath artifacts that are nt present in single-mode fiber OCT systems. Herein, the mechanisms for multipath artifacts in DCF are linked to its modal contents using a commercial software package and experimental measurement.

View Article and Find Full Text PDF

We examined the relationship between the work of breathing (W) during exercise and in vivo measures of airway size in healthy females and males. We hypothesized that sex differences in airway luminal area would explain the larger resistive W during exercise in females. Healthy participants ( = 11 females and = 11 males; 19-30 yr) completed a cycle exercise test to exhaustion where W was assessed using an esophageal balloon catheter.

View Article and Find Full Text PDF

Significance: Chronic lung allograft dysfunction (CLAD) is the leading cause of death in transplant patients who survive past the first year post-transplant. Current diagnosis is based on sustained decline in lung function; there is a need for tools that can identify CLAD onset.

Aim: Endoscopic optical coherence tomography (OCT) can visualize structural changes in the small airways, which are of interest in CLAD progression.

View Article and Find Full Text PDF

Significance: Diagnosis of suspicious lung nodules requires precise collection of relevant biopsies for histopathological analysis. Using optical coherence tomography and autofluorescence imaging (OCT-AFI) to improve diagnostic yield in parts of the lung inaccessible to larger imaging methods may allow for reducing complications related to the alternative of computed tomography-guided biopsy.

Aim: Feasibility of OCT-AFI combined with a commercially available lung biopsy needle was demonstrated for visualization of needle puncture sites in airways with diameters as small as 1.

View Article and Find Full Text PDF

A fiber-based endoscopic imaging system combining narrowband red-green-blue (RGB) reflectance with optical coherence tomography (OCT) and autofluorescence imaging (AFI) has been developed. The system uses a submillimeter diameter rotary-pullback double-clad fiber imaging catheter for sample illumination and detection. The imaging capabilities of each modality are presented and demonstrated with images of a multicolored card, fingerprints, and tongue mucosa.

View Article and Find Full Text PDF

We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis.

View Article and Find Full Text PDF

We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation.

View Article and Find Full Text PDF

High-resolution imaging from within airways may allow new methods for studying lung disease. In this work, we report an endoscopic imaging system capable of high-resolution autofluorescence imaging (AFI) and optical coherence tomography (OCT) in peripheral airways using a 0.9 mm diameter double-clad fiber (DCF) catheter.

View Article and Find Full Text PDF

We present the first endoscopic Doppler optical coherence tomography and co-registered autofluorescence imaging (DOCT-AFI) of peripheral pulmonary nodules and vascular networks in vivo using a small 0.9 mm diameter catheter. Using exemplary images from volumetric data sets collected from 31 patients during flexible bronchoscopy, we demonstrate how DOCT and AFI offer complementary information that may increase the ability to locate and characterize pulmonary nodules.

View Article and Find Full Text PDF

We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods.

View Article and Find Full Text PDF