Publications by authors named "Hohenester U"

In many experiments, nanoparticles are located inside a microfluidic channel, and the light scattered by the particles becomes diffracted through the walls of the capillary. We here derive a simple but accurate approach for simulating the imaging of light through a cylindrical capillary under the assumption that the dimensions of the capillary are much larger than the wavelength of light. A comparison of the simulated images with experimental results shows very good agreement.

View Article and Find Full Text PDF

Interferometric scattering microscopy is a powerful technique that enables various applications, such as mass photometry and particle tracking. Here, we present a numerical toolbox to simulate images obtained in interferometric scattering, coherent bright-field, and dark-field microscopies. The scattered fields are calculated using a boundary element method, facilitating the simulation of arbitrary sample geometries and substrate layer structures.

View Article and Find Full Text PDF

Nanoparticles are produced at accelerating rates, are increasingly integrated into scientific and industrial applications, and are widely discharged into the environment. Analytical techniques are required to characterize parameters such as particle number concentrations, mass and size distributions, molecular and elemental compositions, and particle stability. This is not only relevant to investigate their utility for various industrial or medical applications and for controlling the manufacturing processes but also to assess toxicity and environmental fate.

View Article and Find Full Text PDF

Manufacturers of nanoparticle-based products rely on detailed information about critical process parameters, such as particle size and size distributions, concentration, and material composition, which directly reflect the quality of the final product. These process parameters are often obtained using offline characterization techniques that cannot provide the temporal resolution to detect dynamic changes in particle ensembles during a production process. To overcome this deficiency, we have recently introduced Optofluidic Force Induction (OF2i) for optical real-time counting with single particle sensitivity and high throughput.

View Article and Find Full Text PDF

We theoretically investigate the tomographic reconstruction of the three-dimensional photonic environment of nanoparticles. As input for our reconstruction we use electron energy loss spectroscopy (EELS) maps for different rotation angles. We perform the tomographic reconstruction of surface polariton fields for smooth and rough nanorods and compare the reconstructed and simulated photonic local density of states, which are shown to be in very good agreement.

View Article and Find Full Text PDF

Introduction: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories.

Objectives: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management.

View Article and Find Full Text PDF

Metabolome profiling in biological fluids is an interesting approach for exploring markers of methane emissions in ruminants. In this study, a multiplatform metabolomics approach was used for investigating changes in milk metabolic profiles related to methanogenesis in dairy cows. For this purpose, 25 primiparous Holstein cows at similar lactation stage were fed the same diet supplemented with (treated, n = 12) or without (control, n = 13) a specific antimethanogenic additive that reduced enteric methane production by 23% with no changes in intake, milk production, and health status.

View Article and Find Full Text PDF

Surface phonon polaritons (SPhPs) are coupled photon-phonon excitations that emerge at the surfaces of nanostructured materials. Although they strongly influence the optical and thermal behavior of nanomaterials, no technique has been able to reveal the complete three-dimensional (3D) vectorial picture of their electromagnetic density of states. Using a highly monochromated electron beam in a scanning transmission electron microscope, we could visualize varying SPhP signatures from nanoscale MgO cubes as a function of the beam position, energy loss, and tilt angle.

View Article and Find Full Text PDF

We use cathodoluminescence (CL) spectroscopy in a transmission electron microscope to probe the radial breathing mode of plasmonic silver nanodisks. A two-mirror detection system sandwiching the sample collects the CL emission in both directions, that is, backward and forward with respect to the electron beam trajectory. We unambiguously identify a spectral shift of about 8 nm in the CL spectra acquired from both sides and show that this asymmetry is induced by the electron beam itself.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how reducing methane emissions in lactating cows affects their metabolism, which is crucial for acceptance of methane reduction practices by farmers.
  • Plasma samples from treated cows (with a methane-reducing feed additive) were analyzed and showed a 23% reduction in methane emissions without negatively impacting milk production or health indicators.
  • A total of 48 key metabolites were identified, some linked to microbial activity, indicating potential markers for methanogenesis, while others suggest a positive influence on the cows' amino acid and energy metabolism.
View Article and Find Full Text PDF

Ultra-high-resolution mass spectrometry, in the absence of chromatography, is finding its place for direct analyses of highly complex mixtures, such as those encountered during untargeted metabolomics screening. Advances, however, have been tempered by difficulties such as uneven signal suppression experienced during electrospray ionization. Moreover, ultra-high-resolution mass spectrometers that use Orbitrap and ICR analyzers both suffer from limited ion trapping capacities, owing principally to space-charge effects.

View Article and Find Full Text PDF

The concept of resonances and modes for the description of particle plasmons has recently received great interest, both in the context of efficient simulations as well as for an intuitive interpretation in physical terms. While resonance modes have been successfully employed for geometries whose optical response is governed by a few modes only, the resonance mode description exhibits considerable difficulties for larger nanoparticles with their richer mode spectra. We analyze the problem using a boundary element method approach together with a Mie solution for spherical particles, and identify the fixed link between the electric and magnetic components of the resonance modes as the main source for this shortcoming.

View Article and Find Full Text PDF

We show that the plasmon modes of vertically stacked Ag-SiO-Ag nanodisks can be understood and classified as hybridized surface and edge modes. We describe their universal dispersion relations and demonstrate that coupling-induced spectral shifts are significantly stronger for surface modes than for edge modes. The experimental data correspond well to numerical simulations.

View Article and Find Full Text PDF

Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated dietary intervention was also tested.

View Article and Find Full Text PDF

Annotation of signals of interest represents a key point in mass spectrometry-based metabolomics studies. The first level of investigation is the elemental composition, which can be deduced from accurately measured masses and isotope patterns. However, accuracy of these two parameters remains to be evaluated on last generation mass spectrometers to determine the level of confidence that can be used during the annotation process.

View Article and Find Full Text PDF

Using spatially resolved Electron Energy-Loss Spectroscopy, we investigate the excitation of long-wavelength surface optical vibrational modes in elementary types of nanostructures: an amorphous SiO2 slab, an MgO cube, and in the composite cube/slab system. We find rich sets of optical vibrational modes strongly constrained by the nanoscale size and geometry. For slabs, we find two surface resonances resulting from the excitation of surface phonon polariton modes.

View Article and Find Full Text PDF

Motivation: Flow Injection Analysis coupled to High-Resolution Mass Spectrometry (FIA-HRMS) is a promising approach for high-throughput metabolomics. FIA-HRMS data, however, cannot be preprocessed with current software tools which rely on liquid chromatography separation, or handle low resolution data only.

Results: We thus developed the proFIA package, which implements a suite of innovative algorithms to preprocess FIA-HRMS raw files, and generates the table of peak intensities.

View Article and Find Full Text PDF

Plasmonic gap modes provide the ultimate confinement of optical fields. Demanding high spatial resolution, the direct imaging of these modes was only recently achieved by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). However, conventional 2D STEM-EELS is only sensitive to components of the photonic local density of states (LDOS) parallel to the electron trajectory.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the importance of the photonic local density of states (LDOS) for enhancing light-matter interactions at the nanoscale, particularly in nanophotonics and plasmonics.
  • The authors introduce a novel tomography method using electron microscopy to obtain a detailed 3D representation of the local density of states in plasmonic nanoparticles, achieving high spatial and energy resolution.
  • Their approach successfully demonstrates the ability to visualize LDOS enhancements in silver nanocuboids and coupled nanodisks, highlighting critical features related to surface roughness and particle gaps.
View Article and Find Full Text PDF

Imaging of vibrational excitations in and near nanostructures is essential for developing low-loss infrared nanophotonics, controlling heat transport in thermal nanodevices, inventing new thermoelectric materials and understanding nanoscale energy transport. Spatially resolved electron energy loss spectroscopy has previously been used to image plasmonic behaviour in nanostructures in an electron microscope, but hitherto it has not been possible to map vibrational modes directly in a single nanostructure, limiting our understanding of phonon coupling with photons and plasmons. Here we present spatial mapping of optical and acoustic, bulk and surface vibrational modes in magnesium oxide nanocubes using an atom-wide electron beam.

View Article and Find Full Text PDF

We probe the local sensitivity of an optically excited plasmonic nanoparticle by changing the local dielectric environment through a scanning glass fiber tip. Recording the particle plasmon scattering spectrum for each tip position allows us to observe spectral resonance shifts concurrent with changes in scattering intensity and plasmon damping. For the tip-induced spectral shifts we find the strongest sensitivity at the particle edges, in accordance with the spatial plasmonic field profile.

View Article and Find Full Text PDF

The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms.

View Article and Find Full Text PDF

The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations.

View Article and Find Full Text PDF

Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission.

View Article and Find Full Text PDF

An experimental three dimensional characterization of the local refractive index sensitivity of plasmonic gold nanorods is performed by controlled apposition of lithographic nanostructures. We show up to seven times higher sensitivity values to local changes in the refractive index at the particle tip than center. In addition, successive deposition of defined nm-thin dielectric layers on nanorods covered with stripe masks allows us to study the sensitivity decrease normal to the particle surface separately for different particle sites.

View Article and Find Full Text PDF