The robustness of reverse osmosis (RO) against polar organic micropollutants (MPs) was investigated in pilot-scale drinking water treatment. Experiments were carried in hypoxic conditions to treat a raw anaerobic riverbank filtrate spiked with a mixture of thirty model compounds. The chemicals were selected from scientific literature data based on their relevance for the quality of freshwater systems, RO permeate and drinking water.
View Article and Find Full Text PDFA model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH.
View Article and Find Full Text PDFCalcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2008
Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene] hydrochloride)(49)-block-poly(ethylene oxide)(212) and poly([4-(2-carboxy-ethylthio)-butylene] sodium salt)(47)-block-poly(ethylene oxide)(212) adsorb in equal amounts to both silica and cross-linked 1,2-polybutadiene (PB). The C3Ms have an almost glass-like core and atomic force microscopy of a dried layer of adsorbed C3Ms shows densely packed flattened spheres on silica, which very probably are adsorbed C3Ms. Experiments were performed with different types of surfaces, solvents, and proteins; bare silica and cross-linked 1,2-PB, NaNO(3) and phosphate buffer, and lysozyme, bovine serum albumin, beta-lactoglobulin, and fibrinogen.
View Article and Find Full Text PDFComplex coacervate core micelles form in aqueous solutions from poly(acrylic acid)-block-poly(acrylamide) (PAAxPAAmy, x and y denote degree of polymerization) and poly(N,N-dimethyl aminoethyl methacrylate) (PDMAEMA150) around the stoichiometric charge ratio of the two components. The hydrodynamic radius, Rh, can be increased by adding oppositely charged homopolyelectrolytes, PAA140 and PDMAEMA150, at the stoichiometric charge ratio. Mixing the components in NaNO3 gives particles in highly aggregated metastable states, whose Rh remain unchanged (less than 5% deviation) for at least 1 month.
View Article and Find Full Text PDFThe adsorption of mixed micelles of poly(4-(2-amino hydrochloride-ethylthio)-butylene)- block-poly(ethylene oxide), PAETB 49- b-PEO 212 and poly(4-(2-sodium carboxylate-ethylthio)-butylene)- block-poly(ethylene oxide), PCETB 47- b-PEO 212 on solid/liquid interfaces has been studied with light, X-ray, and neutron reflectometry. The structure of the adsorbed layer can be described with a two-layer model consisting of an inner layer formed by the coacervate of the polyelectrolyte blocks PAETB 49 and PCETB 47 ( approximately 1 nm) and an outer layer of PEO 212 blocks ( approximately 6 nm). The micelles unfold upon adsorption forming a rather homogeneous flat layer that exposes its polyethylene oxide chains into the solution, thus rendering the surface antifouling after modification with the micelles.
View Article and Find Full Text PDFUsing light scattering and cryogenic transmission electron microscopy, we show that highly aggregated polyelectrolyte complexes (HAPECs) composed of poly([4-(2-aminoethylthio)butylene] hydrochloride)49-block-poly(ethylene oxide)212 and poly(acrylic acid) (PAA) of varying lengths (140, 160, and 2000 monomeric units) are metastable or unstable if the method of preparation is direct mixing of two solutions containing the oppositely charged components. The stability of the resulting HAPECs decreases with decreasing neutral-block content and with increasing deviation from 1:1 mixing (expressed in number of chargeable groups) of the oppositely charged polyelectrolytes, most probably for electrostatic reasons. The difference between the metastable and stable states, obtained with pH titrations, increases with increasing PAA length and increasing pH mismatch between the two solutions with the oppositely charged components.
View Article and Find Full Text PDFWith light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of added salt and pH on both types of C3Ms is investigated. The hydrodynamic radius of mixed C3Ms can be controlled by varying the percentage of oppositely charged polyelectrolyte or diblock copolymer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2003
The tubular morphology of intracellular membranous compartments is actively maintained through interactions with motor proteins and the cytoskeleton. Moving along cytoskeletal elements, motor proteins exert forces on the membranes to which they are attached, resulting in the formation of membrane tubes and tubular networks. To study the formation of membrane tubes by motor proteins, we developed an in vitro assay consisting of purified kinesin proteins directly linked to the lipids of giant unilamellar vesicles.
View Article and Find Full Text PDF