Publications by authors named "Hoestgaard-Jensen K"

Extracts of the pepper plant kava (Piper methysticum) are effective in alleviating anxiety in clinical trials. Despite the long-standing therapeutic interest in kava, the molecular target(s) of the pharmacologically active constituents, kavalactones have not been established. γ-Aminobutyric acid type A receptors (GABAARs) are assumed to be the in vivo molecular target of kavalactones based on data from binding assays, but evidence in support of a direct interaction between kavalactones and GABAARs is scarce and equivocal.

View Article and Find Full Text PDF

In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR.

View Article and Find Full Text PDF

In the present study, the orthosteric GABAA receptor (GABAAR) ligand 4,5,6,7-tetrahydroisothiazolo[5,4-c]pyridin-3-ol (Thio-THIP) was found to possess a highly interesting functional profile at recombinant human GABAARs and native rat GABAARs. Whereas Thio-THIP displayed weak antagonist activity at α1,2,5β2,3γ2S and ρ1 GABAARs and partial agonism at α6β2,3δ GABAARs expressed in Xenopus oocytes, the pronounced agonism exhibited by the compound at α4β1δ and α4β3δ GABAARs was contrasted by its negligible activity at the α4β2δ subtype. To elucidate to which extent this in vitro profile translated into functionality at native GABAARs, we assessed the effects of 100 μm Thio-THIP at synaptic and extrasynaptic receptors in principal cells of four different brain regions by slice electrophysiology.

View Article and Find Full Text PDF

γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation.

View Article and Find Full Text PDF

The distribution and physiological functions of the α6 subunit-containing (α6⁎) nicotinic acetylcholine receptors in the central nervous system make them interesting putative therapeutic targets in several disorders. However, investigations into the receptors have been complicated by their inefficient functional expression in vitro. In the present study we have characterized and compared the pharmacological properties displayed by α6β4 and α6β4β3 nicotinic acetylcholine receptors assembled in tsA201 cells from the classical α6/α3 chimera (C1) and two novel α6/α3 chimeras (C6F223L and C16F223L) identified in a recent study (Jensen et al.

View Article and Find Full Text PDF

Explorations into the α6-containing nicotinic acetylcholine receptors (α6* nAChRs) as putative drug targets have been severely hampered by the inefficient functional expression of the receptors in heterologous expression systems. In this study, the molecular basis for the problem was investigated through the construction of chimeric α6/α3 and mutant α3 and α6 subunits and functional characterization of these co-expressed with β4 or β4β3 subunits in tsA201 cells in a fluorescence-based assay and in Xenopus oocytes using two-electrode voltage clamp electrophysiology. Substitution of a small C-terminal segment in the second intracellular loop or the Phe(223) residue in transmembrane helix 1 of α6 with the corresponding α3 segment or residue was found to enhance α6β4 functionality in tsA201 cells significantly, in part due to increased cell surface expression of the receptors.

View Article and Find Full Text PDF

Background And Purpose: Explorations into the heterogeneous population of native GABA type A receptors (GABAA Rs) and the physiological functions governed by the multiple GABAA R subtypes have for decades been hampered by the lack of subtype-selective ligands.

Experimental Approach: The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo.

Key Results: Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAA R subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5 β3 γ2S , α4 β3 δ and α6 β3 δ and somewhat lower efficacies at the corresponding α5 β2 γ2S , α4 β2 δ and α6 β2 δ subtypes (maximal responses of 4-12%).

View Article and Find Full Text PDF

δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices.

View Article and Find Full Text PDF

The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ϕCPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ϕCPAR39 infection.

View Article and Find Full Text PDF

The in vitro and in vivo pharmacological effects of [2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester (AA29504), which is a close analogue of retigabine, have been investigated. AA29504 induced a rightward shift of the activation threshold at cloned KCNQ2, 2/3 and 4 channels expressed in Xenopus oocytes, with a potency 3-4fold lower than retigabine. AA29504 (1 muM) had no agonist activity when tested at alpha(1)beta(3)gamma(2s) or alpha(4)beta(3)delta GABA(A) receptors expressed in Xenopus oocytes, but left-shifted the EC(50) for GABA and gaboxadol (THIP) at both receptors.

View Article and Find Full Text PDF

THIP is a hypnotic drug, which displays a unique pharmacological profile, because it activates a subset of extrasynaptic gamma-aminobutyric acid type A (GABA(A)) receptors containing delta-subunits. It is important to study the physiology and pharmacology of these extrasynaptic receptors and to determine how THIP interacts with other hypnotics and anesthetics. Here, we study the modulation of the extrasynaptic response to THIP using three classes of GABA(A)-receptor ligands.

View Article and Find Full Text PDF