Publications by authors named "Hoeppli R"

Article Synopsis
  • Regulatory T cells (Tregs) are a potential therapy for immune-related conditions, but creating a consistent product that can be stored long-term has been difficult.
  • Using discarded pediatric thymuses provides a reliable source of Tregs, and researchers tested various activation methods and conditions to enhance their production and storage.
  • Findings showed that specific activation reagents and timing of cryopreservation significantly impacted Treg viability and function, leading to improved methods for expanding and storing these cells for future therapies.
View Article and Find Full Text PDF

The role of regulatory T-cells (Treg) and Th17 cells in the progression of multiple myeloma has been unclear. There are conflicting reports of the Treg and Th17 frequency being increased, decreased, and unchanged as compared with controls. In this study, we sought to characterize the T-cell subsets including Treg function in both blood and marrow compartments of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs).

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are believed to be dysfunctional in autoimmunity. Juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM) result from a loss of normal immune regulation in specific tissues such as joints or muscle and skin, respectively. Here, we discuss recent findings in regard to Treg biology in oligo-/polyarticular JIA and JDM, as well as what we can learn about Treg-related disease mechanism, treatment and biomarkers in JIA/JDM from studies of other diseases.

View Article and Find Full Text PDF

Obesity-associated visceral adipose tissue (AT) inflammation promotes insulin resistance and type 2 diabetes (T2D). In mice, lean visceral AT is populated with anti-inflammatory cells, notably regulatory T cells (Tregs) expressing the IL-33 receptor ST2. Conversely, obese AT contains fewer Tregs and more proinflammatory cells.

View Article and Find Full Text PDF

Cell-based therapy with CD4 FOXP3 regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-vs-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood.

View Article and Find Full Text PDF

We optimized a method to detect FOXP3 by mass cytometry and compared the resulting data to conventional flow cytometry. We also demonstrated the utility of the protocol to profile antigen-specific Tregs from whole blood, or Tregs from tissues such as cord blood, thymus and synovial fluid.

View Article and Find Full Text PDF

Strong T cell receptor (TCR) signaling largely induces cell death during thymocyte development, whereas weak TCR signals induce positive selection. However, some T cell lineages require strong TCR signals for differentiation through a process termed agonist selection. The signaling relationships that underlie these three fates are unknown.

View Article and Find Full Text PDF

Cellular therapy with CD4FOXP3 T regulatory (Treg) cells is a promising strategy to induce tolerance after solid-organ transplantation or prevent graft-versus-host disease after transfer of hematopoietic stem cells. Treg cells currently used in clinical trials are either polyclonal, donor- or antigen-specific. Aside from variations in isolation and expansion protocols, however, most therapeutic Treg cell-based products are much alike.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a suppressive subset of T cells that have important roles in maintaining self-tolerance and preventing immunopathology. The T-cell receptor (TCR) and its antigen specificity play a dominant role in the differentiation of cells to a Treg fate, either in the thymus or in the periphery. This review focuses on the effects of the TCR and its antigen specificity on Treg biology.

View Article and Find Full Text PDF

Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches.

View Article and Find Full Text PDF

γδ T cells contribute to first line immune defense, particularly through their ability for rapid production of proinflammatory cytokines. The cytokine profile of γδ T cells is hard-wired already during thymic development. Yet, the molecular pathways underlying this phenomenon are incompletely understood.

View Article and Find Full Text PDF

Regulatory T cell (Treg)-based therapy is a promising approach to treat many immune-mediated disorders such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease (GVHD). Challenges to successful clinical implementation of adoptive Treg therapy include difficulties isolating homogeneous cell populations and developing expansion protocols that result in adequate numbers of cells that remain stable, even under inflammatory conditions. We investigated the potential of discarded human thymuses, routinely removed during pediatric cardiac surgery, to be used as a novel source of therapeutic Tregs.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining the balance between immune activation and tolerance. Their development, either in the thymus, periphery, or experimentally in vitro, and stability and function all depend on the right mix of environmental stimuli. This review focuses on the effects of cytokines, metabolites, and the microbiome on both human and mouse Treg biology.

View Article and Find Full Text PDF