Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD.
View Article and Find Full Text PDFThe RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC).
View Article and Find Full Text PDFThe Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin.
View Article and Find Full Text PDFThe natural compound Artemisinin is the most widely used antimalarial drug worldwide. Based on its cytotoxicity, it is also used for anticancer therapy. Artemisinin and its derivates are endoperoxides that damage proteins in eukaryotic cells; their definite mechanism of action and host cell targets, however, have remained largely elusive.
View Article and Find Full Text PDFHuman organoids allow the study of proliferation, lineage specification, and 3D tissue development. Here we present a genome-wide CRISPR screen in induced pluripotent stem cell (iPSC)-derived kidney organoids. The combination of inducible genome editing, longitudinal sampling, and endpoint sorting of tubular and stromal cells generated a complex, high-quality dataset uncovering a broad spectrum of insightful biology from early development to "adult" epithelial morphogenesis.
View Article and Find Full Text PDFBET bromodomain inhibitors hold promise as therapeutic agents in diverse indications, but their clinical progression has been challenging and none have received regulatory approval. Early clinical trials in cancer have shown heterogeneous clinical responses, development of resistance, and adverse events. Increased understanding of their mechanism(s) of action and identification of biomarkers are needed to identify appropriate indication(s) and achieve efficacious dosing.
View Article and Find Full Text PDFNatural Products (NPs) are molecular' special equipment ' that impart survival benefits on their producers in nature. Due to their evolved functions to modulate biology these privileged metabolites are substantially represented in the drug market and are continuing to contribute to the discovery of innovative medicines such as the recently approved semi-synthetic derivative of the bacterial alkaloid staurosporin in oncology indications. The innovation of low molecular weight compounds in modern drug discovery is built on rapid progress in chemical, molecular biological, pharmacological and data sciences, which together provide a rich understanding of disease-driving molecular interactions and how to modulate them.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBiosynthesis of glycosylphosphatidylinositol (GPI) is required for anchoring proteins to the plasma membrane, and is essential for the integrity of the fungal cell wall. Here, we use a reporter gene-based screen in Saccharomyces cerevisiae for the discovery of antifungal inhibitors of GPI-anchoring of proteins, and identify the oligocyclopropyl-containing natural product jawsamycin (FR-900848) as a potent hit. The compound targets the catalytic subunit Spt14 (also referred to as Gpi3) of the fungal UDP-glycosyltransferase, the first step in GPI biosynthesis, with good selectivity over the human functional homolog PIG-A.
View Article and Find Full Text PDFKendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators.
View Article and Find Full Text PDFResident adult epithelial stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. The stem cell potential of human epidermal keratinocytes is retained in vitro but lost over time suggesting extrinsic and intrinsic regulation. Transcription factor-controlled regulatory circuitries govern cell identity, are sufficient to induce pluripotency and transdifferentiate cells.
View Article and Find Full Text PDFGene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient.
View Article and Find Full Text PDFThe identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling.
View Article and Find Full Text PDFChemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. It is based on identifying cellular hypersensitivity and resistance caused by individual gene modulations with genome-wide coverage. Due to the requirement of bar-coded, genome-wide deletion collections, high-resolution experiments of this nature have historically been limited to fungal systems.
View Article and Find Full Text PDFSelective and specific inhibitors of Plasmodium falciparum lysyl-tRNA synthetase represent promising therapeutic antimalarial avenues. Cladosporin was identified as a potent P. falciparum lysyl-tRNA synthetase inhibitor, with an activity against parasite lysyl-tRNA synthetase >100-fold more potent than that of the activity registered against the human enzyme.
View Article and Find Full Text PDFUsing a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding.
View Article and Find Full Text PDFCladosporin, a natural product known for decades, has recently been discovered to display potent and selective antiplasmodial activity by inhibition of lysyl-tRNA synthetase. It was subjected to a panel of oxidative biotransformations with one fungal and two actinomycetes strains, as well as a triple mutant bacterial CYP102A1, yielding eight, mostly hydroxylated, derivatives. These new compounds covered a wide chemical space and contained two pairs of epimers in the tetrahydropyran ring.
View Article and Find Full Text PDFGossypol is an inhibitor of eukaryotic cells with an undetermined mode of action. Here we show that the chemogenomic profile of gossypol is strikingly similar to that of the iron chelators deferasirox and desferricoprogen. Iron import channels Fet1 and Fet3 are prominent in all three profiles.
View Article and Find Full Text PDFMembers of the diazeniumdiolate class of natural compounds show potential for drug development because of their antifungal, antibacterial, antiviral, and antitumor activities. Yet, their biosynthesis has remained elusive to date. Here, we identify a gene cluster directing the biosynthesis of the diazeniumdiolate compound fragin in Burkholderia cenocepacia H111.
View Article and Find Full Text PDFInvasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents.
View Article and Find Full Text PDFPooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity.
View Article and Find Full Text PDFTim17 and Tim23 are the main subunits of the TIM23 complex, one of the two major essential mitochondrial inner-membrane protein translocon machineries (TIMs). No chemical probes that specifically inhibit TIM23-dependent protein import were known to exist. Here we show that the natural product stendomycin, produced by Streptomyces hygroscopicus, is a potent and specific inhibitor of the TIM23 complex in yeast and mammalian cells.
View Article and Find Full Text PDFThe ability to directly uncover the contributions of genes to a given phenotype is fundamental for biology research. However, ostensibly homogeneous cell populations exhibit large clonal variance that can confound analyses and undermine reproducibility. Here we used genome-saturated mutagenesis to create a biobank of over 100,000 individual haploid mouse embryonic stem (mES) cell lines targeting 16,970 genes with genetically barcoded, conditional and reversible mutations.
View Article and Find Full Text PDFThe microbial metabolite Chivosazole F has been described to affect the cytoskeleton and to inhibit actin polymerization in vitro. Applying orthogonal genomic and proteomics approaches, we now show for the first time that Chivosazole F exerts its effect by directly interacting with actin and demonstrate the cellular impact of Chivosazole F in an unbiased, genome-wide context in yeast and in mammalian cells. Furthermore, mutation-based resistance mapping identifies two SNPs located in the putative Chivosazole F binding site of actin.
View Article and Find Full Text PDF