Publications by authors named "Hoellein T"

Landfills and wastewater treatment plants (WWTP) are point sources for many emerging contaminants, including microplastics and per- and polyfluoroalkyl substances (PFAS). Previous studies have estimated the abundance and transport of microplastics and PFAS separately in landfills and WWTPs. In addition, previous studies typically report concentrations of microplastics as particle count/L or count/g sediment, which do not provide the information needed to calculate mass balances.

View Article and Find Full Text PDF

Watershed models of plastic export from rivers to oceans have large uncertainties, and improvements require direct measurements of riverine macroplastic (>5 mm) and microplastic (<5 mm). Also, plastic represents allochthonous carbon inputs to rivers but is rarely measured as carbon mass. We quantified plastic and organic matter within floating debris rafts and open water in an urban river.

View Article and Find Full Text PDF

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms.

View Article and Find Full Text PDF

Anthropogenic particles (AP), which include microplastics and other synthetic, semisynthetic, and anthropogenically modified materials, are pollutants of concern in aquatic ecosystems worldwide. Rivers are important conduits and retention sites for AP, and time series data on the movement of these particles in lotic ecosystems are needed to assess the role of rivers in the global AP cycle. Much research assessing AP pollution extrapolates stream loads based on single time point measurements, but lotic ecosystems are highly variable over time (e.

View Article and Find Full Text PDF

In aquatic ecosystems, plastic litter is a substrate for biofilms. Biofilms on plastic and natural surfaces share similar composition and activity, with some differences due to factors such as porosity. In freshwaters, most studies have examined biofilms on benthic substrates, while little research has compared the activity and composition of biofilms on buoyant plastic and natural surfaces.

View Article and Find Full Text PDF

To understand biological interactions of plastic litter in freshwater ecosystems, as well the potential effects of plastics on ecosystem processes, studies of the activity and composition of plastic-associated microbial communities are needed. The physical properties and chemical composition of plastic polymers are key components of plastic product design, and may also select for distinct microbial biofilms colonizing plastic litter. We monitored growth and succession of biofilm communities on plastic substrates of common morphotypes (i.

View Article and Find Full Text PDF

The fate of plastics in rivers is a key component of the global plastic cycle. Plastics entering freshwater ecosystems are colonized by microbial biofilms, and microbe-plastic interactions can influence ecosystem processes and plastic fate. While literature examining the role of geographic region on plastic biofilms is quickly expanding, research which covers large (i.

View Article and Find Full Text PDF

In rivers, small and lightweight microplastics are transported downstream, but they are also found frequently in riverbed sediment, demonstrating long-term retention. To better understand microplastic dynamics in global rivers from headwaters to mainstems, we developed a model that includes hyporheic exchange processes, i.e.

View Article and Find Full Text PDF

Plastic litter is accumulating in ecosystems worldwide. Rivers are a major source of plastic litter to oceans. However, rivers also retain and transform plastic pollution.

View Article and Find Full Text PDF

Microplastics are ubiquitous contaminants in aquatic habitats globally, and wastewater treatment plants (WWTPs) are point sources of microplastics. Within aquatic habitats microplastics are colonized by microbial biofilms, which can include pathogenic taxa and taxa associated with plastic breakdown. Microplastics enter WWTPs in sewage and exit in sludge or effluent, but the role that WWTPs play in establishing or modifying microplastic bacterial assemblages is unknown.

View Article and Find Full Text PDF

Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics.

View Article and Find Full Text PDF

Anthropogenic disturbances may be increasing jellyfish populations globally. Epibenthic jellyfish are ideal organisms for studying this phenomenon due to their sessile lifestyle, broad geographic distribution, and prevalence in near-shore coastal environments. There are few studies, however, that have documented epibenthic jellyfish abundance and measured their impact on ecological processes in tropical ecosystems.

View Article and Find Full Text PDF

Groundwater in karst aquifers constitutes about 25% of drinking water sources globally. Karst aquifers are open systems, susceptible to contamination by surface-borne pollutants. In this study, springs and wells from two karst aquifers in Illinois, USA, were found to contain microplastics and other anthropogenic contaminants.

View Article and Find Full Text PDF

Microplastic (particles < 5 mm) pollution dynamics are well documented in oceans and increasingly studied in freshwater. We used a watershed-scale approach to examine spatial and temporal patterns in microplastic concentrations in the Gallatin River watershed (Montana, USA). At 72 sites, trained volunteers collected ∼1-L grab samples at 4 seasons per year over 2 years (n = 714 samples).

View Article and Find Full Text PDF

Microplastic is a contaminant of concern worldwide. Rivers are implicated as major pathways of microplastic transport to marine and lake ecosystems, and microplastic ingestion by freshwater biota is a risk associated with microplastic contamination, but there is little research on microplastic ecology within freshwater ecosystems. Microplastic uptake by fish is likely affected by environmental microplastic abundance and aspects of fish ecology, but these relationships have rarely been addressed.

View Article and Find Full Text PDF

Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of south Texas. We measured N export from both rivers to the estuary over 2 yr that encompass a severe drought, along with detailed mechanisms of N cycling in river, tidal river, and two estuary sites during prolonged drought.

View Article and Find Full Text PDF

Seagrass meadows are important sites of nitrogen (N) transformations in estuaries, however, the role of N loading in driving relative rates of N fixation and denitrification in seagrass habitats is unclear. The current study quantified N fluxes in eelgrass meadows (Zostera marina (L.)) and nearby unvegetated sand in trials representing in situ and N enriched conditions.

View Article and Find Full Text PDF

Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches.

View Article and Find Full Text PDF

Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited.

View Article and Find Full Text PDF

Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented.

View Article and Find Full Text PDF

Oyster reefs have declined globally. Interest in their restoration has motivated research into oyster-mediated ecosystem services including effects on biodiversity, filtration, and nitrogen (N) cycling. Recent evidence suggests oysters may promote denitrification, or anaerobic respiration of nitrate (NO3-) into di-nitrogen gas, via benthic deposition of carbon (C) and N-rich biodeposits.

View Article and Find Full Text PDF