Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases.
View Article and Find Full Text PDFStudies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (Lin-, Sca-1+, c-Kit+) cells, which closely resemble MPP1 cells. HPCLSKs reconstitute hematopoiesis in lethally irradiated recipient mice over >8 months.
View Article and Find Full Text PDFAberrant activation of key signaling-molecules is a hallmark of acute myeloid leukemia (AML) and may have prognostic and therapeutic implications. AML summarizes several disease entities with a variety of genetic subtypes. A comprehensive model spanning from signal activation patterns in major genetic subtypes of pediatric AML (pedAML) to outcome prediction and pre-clinical response to signaling inhibitors has not yet been provided.
View Article and Find Full Text PDFEcotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs.
View Article and Find Full Text PDFThe transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in or more frequently in cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue.
View Article and Find Full Text PDFCyclin-dependent kinases (CDKs) are frequently deregulated in cancer and represent promising drug targets. We provide evidence that CDK8 has a key role in B-ALL. Loss of CDK8 in leukemia mouse models significantly enhances disease latency and prevents disease maintenance.
View Article and Find Full Text PDFDeregulation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is found in cancer with STAT5A/B controlling leukemic cell survival and disease progression. As mutations in STAT5B, but not STAT5A, have been frequently described in hematopoietic tumors, we used BCR/ABL as model systems to investigate the contribution of STAT5A or STAT5B for leukemogenesis. The absence of STAT5A decreased cell survival and colony formation.
View Article and Find Full Text PDFThe p21-activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated.
View Article and Find Full Text PDFOpioids are potent drugs that are widely used to control wound or cancer pain. Increasing evidence suggest that opioids mediate clinically relevant effects that go beyond their classical role as analgesics. Of note, opioids appear to modulate angiogenesis - a process that is critical in wound healing and cancer progression.
View Article and Find Full Text PDFPurpose: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs.
View Article and Find Full Text PDFIn this chapter, we describe model systems to study leukemia driven by the Abelson oncogene. In people, the Abelson oncogene results from the chromosomal translocation t(9;22)(q34;q11) that is found in more than 90 % of all human chronic myeloid leukemia (CML) patients and in 20-25 % of patients suffering from acute lymphoid leukemia (ALL). This translocation is also called Philadelphia chromosome and encodes the BCR/ABL oncogene, a constitutive active tyrosine kinase.
View Article and Find Full Text PDFThe cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment.
View Article and Find Full Text PDFThe transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies.
View Article and Find Full Text PDFThe transcription factor STAT5 (signal transducer and activator of transcription 5) is frequently activated in hematological malignancies and represents an essential signaling node downstream of the BCR-ABL oncogene. STAT5 can be phosphorylated at three positions, on a tyrosine and on the two serines S725 and S779. We have investigated the importance of STAT5 serine phosphorylation for BCR-ABL-induced leukemogenesis.
View Article and Find Full Text PDF