We have assessed the effect of two ether glycerol lipids, 77-6 ((2S, 3R)-4-(Tetradecyloxy)-2-amino-1,3-butanediol) and 56-5 ((S)-2-Amino-3-O-hexadecyl-1-propanol), which are substrates for sphingosine kinases, on inflammatory responses. Treatment of differentiated U937 macrophage-like cells with 77-6 but not 56-5 enhanced IL-1β release; either alone or in the presence of LPS. The stimulatory effect of sphingosine or 77-6 on LPS-stimulated IL-1β release was reduced by pretreatment of cells with the caspase-1 inhibitor, Ac-YVAD-CHO, thereby indicating a role for the inflammasome.
View Article and Find Full Text PDFA fluorescent analog of ET-18-OCH3, 1-O-(7'-N,N-dimethylamino-3'-pentadecanoyl-1'-naphthyl)-2-O-methyl-sn-glycerophosphocholine (1), was synthesized and its bioactivity was screened against 12 human cancer cell lines. The bioactivity of 1 was found to differ markedly from that of ET-18-OCH3. Growth of two prostate cell lines (PC3 and DU145) and a glioma cell line (U251) was significantly affected by 1, with IC50 values of 2, 6, and 12 µM, respectively.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) is involved in hyper-proliferative diseases such as cancer and pulmonary arterial hypertension. We have synthesized inhibitors that are selective for the two isoforms of sphingosine kinase (SK1 and SK2) that catalyze the synthesis of S1P. A thiourea adduct of sphinganine () is selective for SK2 whereas the 1-deoxysphinganines and are selective for SK1.
View Article and Find Full Text PDFSphingadienes are chemopreventive agents that act by blocking signaling pathways that are activated in cancer. A practical synthesis of 4,6- and 4,8-sphingadienes on a scale of gram quantities is reported here in order to allow evaluation of the biological properties of these sphingolipids. The key steps in the preparation of 4,6-sphingadiene (1a) are an intramolecular cyclization of N-Boc derivative 5a to oxazolidinone derivative 6a, followed by conversion to carbamate intermediate 7a and base-mediated hydrolysis to afford the product without further purification.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2012
Sphingosine 1-phosphate, a bioactive signaling molecule with diverse cellular functions, is irreversibly degraded by the endoplasmic reticulum enzyme sphingosine 1-phosphate lyase, generating trans-2-hexadecenal and phosphoethanolamine. We recently demonstrated that trans-2-hexadecenal causes cytoskeletal reorganization, detachment, and apoptosis in multiple cell types via a JNK-dependent pathway. These findings and the known chemistry of related α,β-unsaturated aldehydes raise the possibility that trans-2-hexadecenal may interact with additional cellular components.
View Article and Find Full Text PDFSphingadienes (SDs) derived from soy and other natural sphingolipids are cytotoxic to colon cancer cells via an Akt-dependent mechanism and reduce adenoma formation in Apc(Min/+) mice. Wnt signaling is fundamental to colon carcinogenesis and is the basis for spontaneous tumorigenesis in Apc(Min/+) mice and patients with familial adenomatous polyposis. In the present study, we investigated the impact of SDs on Wnt signaling.
View Article and Find Full Text PDFBackground: Glycosylated antitumor ether lipids (GAELs) kill cells by an apoptosis-independent pathway. A hallmark of this pathway is the formation of large acidic vacuoles; however, very little is known about the process. We examined the hypothesis that 1-O-hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-β-D-glucopyranosyl)-sn-glycerol (Gln), a potent GAEL, diffuses across cell membranes into lysosomes, where protonation of the amine leads to its accumulation and generation of the vacuoles.
View Article and Find Full Text PDFNKT cells respond to a variety of CD1d-restricted glycolipid Ags that are structurally related to the prototypic Ag α-galactosylceramide (α-GalCer). A modified analog of α-GalCer with a carbon-based glycosidic linkage (α-C-GalCer) has generated great interest because of its apparent ability to promote prolonged, Th1-biased immune responses. In this study, we report the activation of spleen NKT cells to α-C-GalCer, and related C-glycoside ligands, is weaker than that of α-GalCer.
View Article and Find Full Text PDFA nonisosteric α-C-glycoside analogue of KRN7000 (α-1C-GalCer, 1) was reported to induce a selective type of cytokine release in human invariant natural killer cells in vitro. We report here a very concise synthetic route to 1 and its analogue 1'. The key steps include olefin cross-metathesis, Sharpless asymmetric epoxidation, and epoxide opening by NaN(3)/NH(4)Cl.
View Article and Find Full Text PDFThe bioactive signaling molecule D-erythro-sphingosine-1-phosphate (S1P) is irreversibly degraded by the enzyme S1P lyase (SPL). The reaction of SPL with C18-S1P generates ethanolamine phosphate and a long-chain fatty aldehyde, trans-2-hexadecenal. Modulation of SPL expression in cells and organisms produces significant phenotypes, most of which have been attributed to corresponding changes in S1P-dependent signaling.
View Article and Find Full Text PDFDeuteration at C-4 and C-5 of sphingosine was achieved via a hydrogen-deuterium exchange reaction of a β-ketophosphonate intermediate catalyzed by ND₄Cl in D₂O/tetrahydrofuran. To install deuterium at C-3 of sphingosine and sphingomyelin, sodium borodeuteride reduction/cerium(III) chloride reduction of an α,β-enone in perdeuteromethanol was used.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) is a sphingolipid signaling molecule crucial for cell survival and proliferation. S1P-mediated signaling is largely controlled through its biosynthesis and degradation, and S1P lyase (S1PL) is the only known enzyme that irreversibly degrades sphingoid base-1-phosphates to phosphoethanolamine and the corresponding fatty aldehydes. S1PL-mediated degradation of S1P results in the formation of (2E)-hexadecenal, whereas hexadecanal is the product of dihydrosphingosine-1-phosphate (DHS1P) degradation.
View Article and Find Full Text PDFAnalogues of 1-O-hexadecyl-sn-3-glycerophosphonocholine (compounds 1-4) or sn-3-glycerophosphocholine (compound 5) bearing a carbamate or dicarbamate moiety at the sn-2 position were synthesized and evaluated for their antiproliferative activity against cancer cells derived from a variety of tissues. Although all of the compounds are antiproliferative, surprisingly the carbamates (1 and 2) are more effective against the hormone-independent cell lines DU145 and PC3 than toward other cancer cell lines we examined. This selectivity was not observed with the dicarbamates (3 and 4).
View Article and Find Full Text PDFAn asymmetric synthesis of d-ribo-phytosphingosine (1) was achieved by utilizing the ProPhenol (12)-catalyzed alkynylation of unsaturated aldehyde 8 to afford allylic propargylic alcohol (S)-6 followed by asymmetric epoxidation and opening of propargylic epoxy alcohol anti-5 with NaN(3)/NH(4)Cl. Deprotection and reduction of the resulting acyclic azide 3 then gave 1. Alkyne-azide 3 was subjected to an intramolecular click reaction, generating a bicyclic triazole, which was found to have unexpected vicinal coupling constants.
View Article and Find Full Text PDFStereocontrolled syntheses of alpha-C-GalCer (2) and its alpha-C-acetylenic analogue 6 were accomplished in high efficiency by a convergent construction strategy from 1-hexadecene and d-galactose. The key transformations include Sonogashira coupling, Sharpless asymmetric epoxidation, and Et(2)AlCl-catalyzed cyclization of an epoxytrichloroacetimidate to generate protected dihydrooxazine 21.
View Article and Find Full Text PDFSphingolipid metabolites regulate cell proliferation, migration, and stress responses. Alterations in sphingolipid metabolism have been proposed to contribute to carcinogenesis, cancer progression, and drug resistance. We identified a family of natural sphingolipids called sphingadienes and investigated their effects in colon cancer.
View Article and Find Full Text PDFGlycosylated antitumor ether lipids (GAELs) have superior anticancer properties relative to the alkyllysophospholipid class, but there have been no studies of the mechanisms of these compounds. The prototype GAEL, 1-O-hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-beta-D-glucopyranosyl)-sn-glycerol (Gln), effectively killed mouse embryonic fibroblasts (MEFs) lacking key molecules involved in caspase-dependent apoptosis, and cell death was not prevented by caspase inhibitors. Gln did not cause a loss of mitochondrial membrane potential, even in rounded-up dying cells.
View Article and Find Full Text PDFSphingolipids comprise a complex group of lipids concentrated in membrane rafts and whose metabolites function as signaling molecules. Sphingolipids are conserved in Drosophila, in which their tight regulation is required for proper development and tissue integrity. In this study, we identified a new family of Drosophila sphingolipids containing two double bonds in the long chain base (LCB).
View Article and Find Full Text PDFAutotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2) is an autocrine motility factor initially characterized from A2058 melanoma cell-conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA).
View Article and Find Full Text PDFThe glycolipid transfer protein (GLTP)-mediated movement of galactosylceramide from model membrane donor vesicles to acceptor vesicles is sensitive to the membrane environment surrounding the glycolipid. GLTP can catalyze the transfer of a fluorescently labeled GSL, anthrylvinyl-galactosylceramide (AV-GalCer), from vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and dipalmitoylphosphatidylcholine matrices, but not from vesicles prepared from N-palmitoylsphingomyelin, regardless of the cholesterol content of the vesicles. In this study, we have examined the structural features of sphingomyelin (SM) that are responsible for its inhibition of the rate of GLTP-catalyzed transfer of AV-GalCer.
View Article and Find Full Text PDFThe structural features of SPM that control the transbilayer distribution of beta-GalCer in POPC vesicles were investigated by (13)C- and (31)P-NMR spectroscopy using lipid analogs that share physical similarities with GalCer or SPM. The SPM analogs included N-palmitoyl-4,5-dihydro-SPM, 3-deoxy-SPM, 1-alkyl-2-amidophosphatidylcholine, and dipalmitoylphosphatidylcholine, a popular model "raft lipid". The transbilayer distributions of the SPM analogs and SPM in POPC vesicles were similar by (31)P-NMR.
View Article and Find Full Text PDFThe biological activities of ceramides show a large variation with small changes in molecular structure. To help understand how the structure regulates the activity of this important lipid second messenger, we investigated the interfacial features of a series of synthetic ceramide analogs in monomolecular films at the argon-buffer interface. To minimize differences arising from the N-acyl moiety, each analog had either a N-hexadecanoyl or a N-cis-4-hexadecenoyl moiety amide linked to the nitrogen of the sphingosine backbone.
View Article and Find Full Text PDFThe first synthesis of an isosteric phosphonate analogue of the aminotriol lipid phytosphingosine (3), together with an improved synthesis of (2S,3S,4S)-phytosphingosine (2), are described. A key intermediate is 3-pentylidene acetal 9, which was prepared in two steps from dimethyl 2,3-O-benzylidene-d-tartrate (7).
View Article and Find Full Text PDFThe enantiomers of a novel unsaturated phosphonocholine antitumor ether lipid were synthesized and found to have differential antiproliferative effects against epithelial cancer cell lines. The basis of the enantioselective effects on the cells was investigated in SK-N-MC and SK-N-SH neuroblastoma tumor cells. Our results indicate that the enantioselective antiproliferative potency arises primarily from the activation of the JNK signaling pathway by the ether lipids.
View Article and Find Full Text PDFNeointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor-like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)gamma antagonist GW9662 and mimicked by PPARgamma agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine.
View Article and Find Full Text PDF