Quantitative understanding of nanoscale interactions is a prerequisite for harnessing the remarkable collective properties of nanoparticle systems. Here, we report the combined use of liquid-phase transmission electron microscopy and electron beam lithography to elucidate the interactions between charged nanorods in a predefined potential energy landscape. In situ site-selective lift-off of surface-functionalized lithographed gold nanorods is achieved by patterning them with adhesion layer materials that undergo etching at different rates.
View Article and Find Full Text PDFOne of the key challenges facing liquid-phase transmission electron microscopy (TEM) of biological specimens has been the damaging effects of electron beam irradiation. The strongly ionizing electron beam is known to induce radiolysis of surrounding water molecules, leading to the formation of reactive radical species. In this study, we employ DNA-assembled Au nanoparticle superlattices (DNA-AuNP superlattices) as a model system to demonstrate that graphene and its derivatives can be used to mitigate electron beam-induced damage.
View Article and Find Full Text PDFWe present two examples of the use of liquid cells to study colloidal inorganic nanocrystals using in situ transmission electron microscopy. The first uses a liquid cell to quantify the interaction potential between pairs of colloidal nanocrystals, and the second demonstrates direct imaging of nanocrystal growth and structure in the liquid cell.
View Article and Find Full Text PDFWe demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories.
View Article and Find Full Text PDFThe photostability of two donor polymers, DPP-TT-T and PTB7, is compared in neat films and blend films with PC(71)BM. In both neat and blend films, PTB7 is shown to be relatively unstable. This observation is shown to correlate with transient optical studies of long lived polymer triplets and with molecular probe studies of singlet oxygen yields.
View Article and Find Full Text PDF