Diamond is increasingly popular because of its unique material properties. Diamond defects called nitrogen vacancy (NV) centers allow for measurements with unprecedented sensitivity. However, to achieve ideal sensing performance, NV centers need to be within nanometers from the surface and are thus strongly dependent on the local surface chemistry.
View Article and Find Full Text PDFWe present an alternative to conventional Electron Paramagnetic Resonance (EPR) spectroscopy equipment. Avoiding the use of bulky magnets and magnetron equipment, we use the photoluminescence of an ensemble of Nitrogen-Vacancy centers at the surface of a diamond. Monitoring their relaxation time (or T1), we detected their cross-relaxation with a compound of interest.
View Article and Find Full Text PDFDiamond magnetometry makes use of fluorescent defects in diamonds to convert magnetic resonance signals into fluorescence. Because optical photons can be detected much more sensitively, this technique currently holds several sensitivity world records for room temperature magnetic measurements. It is orders of magnitude more sensitive than conventional magnetic resonance imaging (MRI) for detecting magnetic resonances.
View Article and Find Full Text PDF