Publications by authors named "Hoda Khalesi"

Jerky is a type of meat product traditionally produced using a hang-drying process to achieve desirable textural properties. Inspired by the jerky processing, we present a strategy for fabricating strong alginate hydrogels with highly anisotropic structures via stretching and drying under constant stress. The tunable stretching process endowed the alginate hydrogels with adjustable mechanical properties and structural features by promoting the orientation and aggregation of the constituent polymers.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined how different types of cellulose affect the adsorption of calcium (Ca) and zinc (Zn) ions, with a focus on carboxymethyl cellulose (CMC), TEMPO-oxidized nanofibrillated/nanocrystalline cellulose (TOCNF/TOCNC), and microcrystalline cellulose (MCC).
  • Results showed that CMC had a significantly higher ion adsorption capacity for both minerals compared to the other cellulose types due to its strong carboxyl group interactions.
  • Despite some negative effects on ion adsorption in laboratory settings, TOCNF/TOCNC's fermentability seemed to improve mineral bioavailability in real-life scenarios, indicating that the type of cellulose matters for mineral absorption.
View Article and Find Full Text PDF

The combination of fiber and hydrogel in a system can provide substantial benefits for both components, including the development of three-dimensional structures for the fiber, followed by modifications in the rheological and mechanical properties of the hydrogel. Despite a large increase in the use of fiber-hydrogel composites (FHCs) in various sciences and industries such as biomedicine, tissue engineering, cosmetics, automotive, textile, and agriculture, there is limited information about FHCs in the realm of food application. In this regard, this study reviews the mechanism of FHCs.

View Article and Find Full Text PDF

Adding fibers to hydrogels is a modern strategy for producing tough hydrogels. Nanofibers usually perform well in hydrogels due to their unique properties. The purpose of this study was to investigate the effects of whey protein amyloid fibril (WPF) on the properties ofheat-set whey proteinisolate (WPI)gels with fine-stranded or particulate microstructure (at pH 7).

View Article and Find Full Text PDF

Development of new sources and isolation processes has recently enhanced the production of cellulose in many different colloidal states. Even though cellulose is widely used as a functional ingredient in the food industry, the relationship between the colloidal states of cellulose and its applications is mostly unknown. This review covers the recent progress on illustrating various colloidal states of cellulose and the influencing factors with special emphasis on the correlation between the colloidal states of cellulose and its applications in food industry.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production.

View Article and Find Full Text PDF

In this study, the influence of Persian gum (PG) on the properties of whey protein concentrate (WPC) emulsion gel prepared through cold set gelation method (incorporation of CaCl) was investigated. The mean droplet size of emulsions was analyzed prior to gelation and the emulsion gel samples were characterized by rheological studies, scanning electron microscopy (SEM) and water holding capacity (WHC) measurement. Results showed PG affected the droplet size of the initial emulsions and the matrix of gel systems.

View Article and Find Full Text PDF