Publications by authors named "Hoda Elkhenany"

Osteoarthritis (OA) remains a challenging joint disorder necessitating effective anti-inflammatory interventions. In this study, our primary objective was to establish an in vitro protocol that replicates the clinical investigation of anti-inflammatory drugs intended for OA management. Focusing on recombinant IL-10 (r.

View Article and Find Full Text PDF

In recent years, the exploration of sustainable alternatives in the field of bone tissue engineering has led researchers to focus on marine waste byproducts as a valuable resource. These marine resources, often overlooked remnants of various industries, exhibit a rich composition of hydroxyapatite, collagen, calcium carbonate, and other minerals essential to the complex framework of bone structure. Marine waste by-products can emit gases such as methane and carbon dioxide, highlighting the urgency to repurpose these materials for innovative tissue regeneration solutions, offering a sustainable approach to address environmental challenges while advancing medical science.

View Article and Find Full Text PDF

Nanoparticles (NPs) have emerged as a promising solution for many biomedical applications. Although not all particles have antimicrobial or regenerative properties, certain NPs show promise in enhancing wound healing by promoting tissue regeneration, reducing inflammation, and preventing infection. Integrating various NPs can further enhance these effects.

View Article and Find Full Text PDF

Background: Type 2 diabetes is an endocrine disorder characterized by compromised insulin sensitivity that eventually leads to overt disease. Adipose stem cells (ASCs) showed promising potency in improving type 2 diabetes and its complications through their immunomodulatory and differentiation capabilities. However, the hyperglycaemia of the diabetic microenvironment may exert a detrimental effect on the functionality of ASCs.

View Article and Find Full Text PDF

Background: Pericytes (PCs) are multipotent contractile cells that wrap around the endothelial cells (ECs) to maintain the blood vessel's functionality and integrity. The hyperglycemia associated with Type 2 diabetes mellitus (T2DM) was shown to impair the function of PCs and increase the risk of diabetes complications. In this study, we aimed to investigate the deleterious effect of the diabetic microenvironment on the regenerative capacities of human PCs.

View Article and Find Full Text PDF

Wound healing is a multifaceted biological process requiring innovative strategies to enhance efficiency and counter infections. In this groundbreaking study, we investigate the regenerative potential of platelet-rich plasma (PRP) integrated into a gelatin (GLT) scaffold along with nanocomposites of titanium dioxide (TiO2) (P25)/single-walled carbon nanotubes (SWCNTs)/Ag and P25/reduced graphene oxide (rGO)/Ag. Incorporating these advanced materials into the PRP/GLT delivery system aims to optimize the controlled release of growth factors (GFs) and leverage the exceptional properties of nanomaterials for enhanced tissue repair and wound healing outcomes.

View Article and Find Full Text PDF

Background: Curcumin is a biomolecule that can be extracted from the Curcuma longa that has been shown to have the potential to aid skin wound healing. It has been studied for its anti-inflammatory and antioxidant properties, which may help to reduce swelling and promote tissue repair. However, curcumin has low solubility in water, which can limit its absorption and bioavailability.

View Article and Find Full Text PDF

This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP.

View Article and Find Full Text PDF

Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges.

View Article and Find Full Text PDF

Regenerative biological therapies using mesenchymal stem cells (MSCs) are being studied and used extensively in equine veterinary medicine. One of the important properties of MSCs is the cells' reparative effect, which is brought about by paracrine signaling, which results in the release of biologically active molecules, which in turn, can affect cellular migration and proliferation, thus a huge potential in wound healing. The objective of the current study was to demonstrate the and potentials of equine allogenic bone marrow-derived MSCs for wound healing.

View Article and Find Full Text PDF

Background: Propolis extracted from beehives has been conferred with natural antimicrobial and antioxidant properties. Hence, it has been recommended as a wound healing therapy. This study investigated the additive value of nanotechnology to the herbal extract, (propolis rebuts), after which we examined its efficacy in wound healing.

View Article and Find Full Text PDF

The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties.

View Article and Find Full Text PDF

Tissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI-a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning PuraMatrix™ peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC). In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to non-embedded iNPCs.

View Article and Find Full Text PDF

We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal-curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC.

View Article and Find Full Text PDF

Treatment of burn wounds has many requirements to ensure wound closure with healthy tissue, increased vascularization, guarantee edema resolution, and control bacterial infection. We propose that titanium oxide (TiO) nanoparticles (NPs) will be more efficient than silver dioxide (AgO) in the treatment of burn wounds. Herein, gelatin loaded NPs (GLT-NPs) were evaluated for their efficacy to regenerate second-degree burn wound in rabbit skin.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees.

View Article and Find Full Text PDF

Therapeutically targeting cancer stem cells (CSCs), which play a role in tumor initiation and relapse, remains challenging. Novel-formulated platinum nanoparticles (Pt-NPs) supported on polybenzimidazole (PBI)-functionalized polymers and multiwalled carbon nanotubes (MWCNT) were prepared and their effect on CSCs was evaluated. Pt-NPs showed homogenous distribution on the surface of MWCNT/PBI composites, with very narrow particle size.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate.

View Article and Find Full Text PDF

However, labelling of stem cells using nanoparticles (NPs) for tracking purpose has been intensively investigated, the biosafety of these materials needs more clarification. Herein, different forms of iron oxide FeO, FeO, and CoNi FeO NPs either uncoated or starch-coated (ST-coated) were prepared. We successfully labelled adipose-derived stem cells (ASCs) using these NPs with the aid of lipofectamine as a transfection agent (TA).

View Article and Find Full Text PDF

Background: Propolis is a resinous material extracted from bee glue with a complex chemical composition. The unique biological properties of propolis have led to its use in alternative medicine and as a nutritional supplement. Recent research shows that propolis could affect the immune system by decreasing the production of inflammatory cytokines and potentiating an effect on resident stem cells.

View Article and Find Full Text PDF

The circadian rhythm orchestrates many cellular functions, such as cell division, cell migration, metabolism and numerous intracellular biological processes. The physiological changes during sleep are believed to promote a suitable microenvironment for stem cells to proliferate, migrate and differentiate. These effects are mediated either directly by circadian clock genes or indirectly via hormones and cytokines.

View Article and Find Full Text PDF

Telomerase and its core component, telomerase reverse transcriptase (hTERT), are critical for stem cell compartment integrity. Normal adult stem cells have the longest telomeres in a given tissue, a property mediated by high hTERT expression and high telomerase enzymatic activity. In contrast, cancer stem cells (CSCs) have short telomeres despite high expression of hTERT, indicating that the role of hTERT in CSCs is not limited to telomere elongation and/or maintenance.

View Article and Find Full Text PDF

The potential of graphene-based nanoparticles (GNPs) has recently gained significant attention in biomedicine, especially in tissue engineering. In this study, we investigated the osteoinductive and osteoconductive effects of low oxygen content graphene (LOG) nanoparticles on adult mesenchymal stem cells (MSCs) in vitro and in vivo. We showed that adult goat MSCs were viable in the presence of 0.

View Article and Find Full Text PDF

Background: Adult mesenchymal stem cells (MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses, sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture.

View Article and Find Full Text PDF