NAD(P)H quinone oxidoreductase-1 (NQO1) is a homodimeric protein that acts as a detoxifying enzyme or as a chaperone protein. Dicourmarol interacts with NQO1 at the NAD(P)H binding site and can both inhibit enzyme activity and modulate the interaction of NQO1 with other proteins. We show that the binding of dicoumarol and related compounds to NQO1 generates negative cooperativity between the monomers.
View Article and Find Full Text PDFThe NCI chemical database has been screened using in silico docking to identify novel inhibitors of NRH:quinone oxidoreductase 2 (NQO2). Compounds identified from the screen exhibit a diverse range of scaffolds and inhibitory potencies are generally in the micromolar range. Some of the compounds also have the ability to inhibit NQO1.
View Article and Find Full Text PDFHigh level correlated quantum chemical calculations, using MP2 and local MP2 theory, have been performed for conformations of the disaccharide, beta-maltose, and the trisaccharide, 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranose. For beta-maltose, MP2 and local MP2 calculations using the 6-311++G** basis set are in good agreement, predicting a global minimum gas-phase conformation with a counterclockwise hydrogen bond network and the experimentally-observed intersaccharide hydrogen bonding arrangement. For conformations of 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranose, MP2/6-311++G**, and local MP2/6-311++G** calculations do not provide a consensus prediction of relative energetics, with the MP2 method finding large differences in stability between extended and folded trisaccharide conformations.
View Article and Find Full Text PDF