Publications by authors named "Hockman D"

The human brain undergoes protracted postnatal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell-type-specific gene expression dynamics. Here, using single-nucleus RNA sequencing on temporal lobe tissue, including samples of African ancestry, we build a joint pediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics.

View Article and Find Full Text PDF

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells.

View Article and Find Full Text PDF
FGF1.

Differentiation

September 2024

Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths.

View Article and Find Full Text PDF

Background & Aims: An optimal HCV vaccine requires the induction of antibodies that neutralise the infectivity of many heterogenous viral isolates. In this study, we have focused on determining the optimal recombinant envelope glycoprotein component to elicit cross-neutralising antibodies against global HCV genotypes. We compared the immunoreactivity and antigenicity of the HCV genotype 1a strain H77C-derived envelope glycoprotein heterodimer gpE1/gpE2 with that of recombinant gpE2 alone.

View Article and Find Full Text PDF

In vertebrates, the lateral body wall muscle formation is thought to be initiated by direct outgrowth of the dermomyotomes resulting in the elongation of the hypaxial myotomes. This contrasts with the formation of the muscles of the girdle, limbs and intrinsic tongue muscles, which originate from long-range migrating progenitors. Previous work shows that the migration of these progenitors requires CXCR4 which is specifically expressed in the migrating cells, but not in the dermomyotome.

View Article and Find Full Text PDF
FGF20.

Differentiation

September 2024

Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms.

View Article and Find Full Text PDF
FGF18.

Differentiation

September 2024

FGF18 was discovered in 1998. It is a pleiotropic growth factor that stimulates major signalling pathways involved in cell proliferation and growth, and is involved in the development and homeostasis of many tissues such as bone, lung, and central nervous system. The gene consists of five exons that code for a 207 amino acid glycosylated protein.

View Article and Find Full Text PDF

The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics.

View Article and Find Full Text PDF

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation.

View Article and Find Full Text PDF

Branchiomeric skeletal muscles are a subset of head muscles originating from skeletal muscle progenitor cells in the mesodermal core of pharyngeal arches. These muscles are involved in facial expression, mastication, and function of the larynx and pharynx. Branchiomeric muscles have been the focus of many studies over the years due to their distinct developmental programs and common origin with the heart muscle.

View Article and Find Full Text PDF

A prerequisite for discovering the properties and therapeutic potential of branchiomeric muscles is an understanding of their fate determination, pattering and differentiation. Although the expression of differentiation markers such as myosin heavy chain (MyHC) during trunk myogenesis has been more intensively studied, little is known about its expression in the developing branchiomeric muscle anlagen. To shed light on this, we traced the onset of MyHC expression in the facial and neck muscle anlagen by using the whole-mount in situ hybridization between embryonic days E9.

View Article and Find Full Text PDF

SARS-CoV-2 is the etiological agent of COVID19. There are currently several licensed vaccines approved for human use and most of them target the spike protein in the virion envelope to induce protective immunity. Recently, variants that spread more quickly have emerged.

View Article and Find Full Text PDF

Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability.

View Article and Find Full Text PDF

Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling.

View Article and Find Full Text PDF

The oxygen transport function of hemoglobin (HB) is thought to have arisen ∼500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently.

View Article and Find Full Text PDF

Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21.

View Article and Find Full Text PDF

The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration.

View Article and Find Full Text PDF

The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes.

View Article and Find Full Text PDF

Multiplex nucleic acid diagnostics for blood-borne pathogens have moved closer to clinical application in the two years since we first reviewed this topic. Areas covered: A new emphasis on detecting pathogens directly in a blood sample without culture, coupling PCR amplification to microfluidic devices and higher multiplexing in isothermal amplification are some of the advances. A wholly new approach of correlating host gene expression response with specific infectious agents opens another opportunity for multiplex detection.

View Article and Find Full Text PDF

Background & Aims: Induction of cross-reactive antibodies targeting conserved epitopes of the envelope proteins E1E2 is a key requirement for an hepatitis C virus vaccine. Conserved epitopes like the viral CD81-binding site are targeted by rare broadly neutralizing antibodies. However, these viral segments are occluded by variable regions and glycans.

View Article and Find Full Text PDF
Article Synopsis
  • The article was originally published without open access, but this has now been fixed and is noted in all versions.
  • An error regarding Robb Krumlauf's affiliation, indicating equal contribution, was missing in the original PDF but has been corrected.
  • Both the open access status and the authorship issue have been addressed to reflect accurate information.
View Article and Find Full Text PDF

Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level.

View Article and Find Full Text PDF