Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g.
View Article and Find Full Text PDFOral diseases such as tooth caries, periodontal diseases, endodontic infections, etc., are prevalent worldwide. The heavy burden of oral infectious diseases and their consequences on the patients' quality of life indicates a strong need for developing effective therapies.
View Article and Find Full Text PDFCalcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells.
View Article and Find Full Text PDFDental caries are the most prevalent chronic infections in the oral cavity, and Streptococcus mutans acts as the main cariogenic bacterial species. Antibacterial quaternary ammonium compounds (QAs) have been developed to preveFnt or treat dental caries. However, there is no report on the tolerance of S.
View Article and Find Full Text PDFWhite spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release.
View Article and Find Full Text PDFAntibacterial dimethylaminododecyl methacrylate (DMADDM) was recently synthesized. The objectives of this study were to: (1) investigate antibacterial activity of DMADDM-containing primer on Streptococcus mutans impregnated into dentin blocks for the first time, and (2) compare the antibacterial efficacy of DMADDM with a previous quaternary ammonium dimethacrylate (QADM). Scotchbond Multi-Purpose (SBMP) bonding agent was used.
View Article and Find Full Text PDFDental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.
View Article and Find Full Text PDFSecondary caries due to biofilm acids is a primary cause of dental composite restoration failure. To date, there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachment. The objectives of this study were to develop a protein-repellent dental composite by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) and to investigate for the first time the effects of MPC mass fraction on protein adsorption, bacteria attachment, biofilm growth, and mechanical properties.
View Article and Find Full Text PDF