Time-resolved extreme ultraviolet spectroscopy was used to investigate photodissociation within the iodobenzene C-band. The carbon-iodine bond of iodobenzene was photolyzed at 200 nm, and the ensuing dynamics were probed at 10.3 nm (120 eV) over a 4 ps range.
View Article and Find Full Text PDFWe report the generation of the fifth harmonic of Ti:sapphire, at 160 nm, with more than 4 µJ of pulse energy and a pulse length of 37 fs with a 1 kHz repetition rate. The vacuum ultraviolet pulses are produced using four-wave difference frequency mixing in a He-filled stretched hollow-core fiber, driven by a pump at 267 nm and seeded at 800 nm. Guided by simulations using Luna.
View Article and Find Full Text PDFWe present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation.
View Article and Find Full Text PDFC-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy.
View Article and Find Full Text PDFWe develop and experimentally demonstrate a methodology for a full molecular frame quantum tomography (MFQT) of dynamical polyatomic systems. We exemplify this approach through the complete characterization of an electronically nonadiabatic wave packet in ammonia (NH_{3}). The method exploits both energy and time-domain spectroscopic data, and yields the lab frame density matrix (LFDM) for the system, the elements of which are populations and coherences.
View Article and Find Full Text PDFWe present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated.
View Article and Find Full Text PDFThe recent advances in femtosecond vacuum UV (VUV) pulse generation, pioneered by the work of Noack et al., has enabled new experiments in ultrafast time-resolved spectroscopy. Expanding on this work, we report the generation of 60 fs VUV pulses at the 7th harmonic of Ti:sapphire with more than 50 nJ of pulse energy at a repetition rate of 1 kHz.
View Article and Find Full Text PDFLinearly polarized synchrotron radiation has been used to record polarization dependent, non-resonant Auger electron spectra of XeF, encompassing the bands due to the xenon MNN, MNN, MNN and MNV and fluorine KVV transitions. Resonantly excited Auger spectra have been measured at photon energies coinciding with the Xe 3d → σ* and the overlapped Xe 3d/F 1s → σ* excitations in XeF. The non-resonant and resonantly excited spectra have enabled the Auger electron angular distributions, as characterized by the parameter, to be determined for the MNN transitions.
View Article and Find Full Text PDFWe present a comparison of the photoionization dynamics of the 4d shell of XeF from threshold to 250 eV to those of the prototypical 4d shell of atomic Xe. The new experimental data include spin-orbit and ligand-field-resolved partial cross sections, photoelectron angular distributions, branching fractions, and lifetime widths for the 4d-hole states. The spin-orbit branching fractions and angular distributions are remarkably similar to the corresponding distributions from atomic Xe across a broad energy interval that includes both the intense shape resonance in the f continuum and a Cooper minimum in the same channel.
View Article and Find Full Text PDFWe compare the excited state dynamics of diiodomethane (CHI) and bromoiodomethane (CHBrI) using time resolved photoelectron spectroscopy. A 4.65 eV UV pump pulse launches a dissociative wave packet on excited states of both molecules and the ensuing dynamics are probed via photoionization using a 7.
View Article and Find Full Text PDFPhotoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements.
View Article and Find Full Text PDFThe Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials.
View Article and Find Full Text PDFElectrons detached from atoms or molecules by photoionization carry information about the quantum state from which they originate, as well as the continuum states into which they are released. Generally, the photoelectron momentum distribution is composed of a coherent sum of angular momentum components, each with an amplitude and phase. Here we show, by using photoionization of neon, that a train of attosecond pulses synchronized with an infrared laser field can be used to disentangle these angular momentum components.
View Article and Find Full Text PDFQuantum photonics offers much promise for the development of new technologies. The ability to control the interaction of light and matter at the level of single quantum excitations is a prerequisite for the construction of potentially powerful devices. Here we use the rotational levels of a room temperature ensemble of hydrogen molecules to couple two distinct optical modes at the single photon level using femtosecond pulses with 2 THz bandwidth.
View Article and Find Full Text PDFPhotoelectron angular distributions (PADs) obtained from ionization of potassium atoms using moderately intense femtosecond IR fields (∼10^{12} W cm^{-2}) of various polarization states are shown to provide a route to "complete" photoionization experiments. Ionization occurs by a net three-photon absorption process, driven via the 4s→4p resonance at the one-photon level. A theoretical treatment incorporating the intrapulse electronic dynamics allows for a full set of ionization matrix elements to be extracted from 2D imaging data.
View Article and Find Full Text PDFWe report results of the application of a fully ab initio approach for simulating time-resolved molecular-frame photoelectron angular distributions around conical intersections in CS2. The technique employs wave packet densities obtained with the multiple spawning method in conjunction with geometry- and energy-dependent photoionization matrix elements. The robust agreement of these results with measured molecular-frame photoelectron angular distributions for CS2 demonstrates that this technique can successfully elucidate, and disentangle, the underlying nuclear and photoionization dynamics around conical intersections in polyatomic molecules.
View Article and Find Full Text PDFWe bring the methodology of orienting polar molecules together with the phase sensitivity of high harmonic spectroscopy to experimentally compare the phase difference of attosecond bursts of radiation emitted upon electron recollision from different ends of a polar molecule. This phase difference has an impact on harmonics from aligned polar molecules, suppressing emission from the molecules parallel to the driving laser field while favoring the perpendicular ones. For oriented molecules, we measure the amplitude ratio of even to odd harmonics produced when intense light irradiates CO molecules and determine the degree of orientation and the phase difference of attosecond bursts using molecular frame ionization and recombination amplitudes.
View Article and Find Full Text PDFMolecular frame high-harmonic spectra of aligned N2 molecules reveal a Cooper-like minimum. By deconvolving the laboratory frame alignment distribution, what was previously thought to be a maximum of emission along the molecular axis is found to be maxima at 35 degrees off axis, with a spectral minimum on axis. Both of these features are supported by photoionization calculations that underline the relationship between high-harmonic spectroscopy and photoionization measurements.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2011
Time-resolved photoelectron spectroscopy (TRPES) is a powerful tool for the study of intramolecular dynamics, particularly excited state non-adiabatic dynamics in polyatomic molecules. Depending on the problem at hand, different levels of TRPES measurements can be performed: time-resolved photoelectron yield; time- and energy-resolved photoelectron yield; time-, energy-, and angle-resolved photoelectron yield. In this pedagogical overview, a conceptual framework for time-resolved photoionization measurements is presented, together with discussion of relevant theory for the different aspects of TRPES.
View Article and Find Full Text PDFWe demonstrate a new method to investigate the origin of spectral structures in high-harmonic generation. We report detailed measurements of high-harmonic spectra in aligned nitrogen and carbon dioxide molecules. Varying the wavelength and intensity of the generating laser field, we show that the minimum in aligned N2 molecules is nearly unaffected, whereas the minimum in aligned CO2 molecules shifts over more than 15 eV.
View Article and Find Full Text PDFIn this article we present photoelectron spectra and angular distributions in which ion rotational states are resolved. This data enables the comparison of direct and threshold photoionization techniques. We also present angle-resolved photoelectron signals at different total energies, providing a method to scan the structure of the continuum in the near-threshold region.
View Article and Find Full Text PDFWe present, for the first time, rotationally resolved photoelectron images resulting from the ionization of a polyatomic molecule. Photoelectron angular distributions pertaining to the formation of individual rotational levels of NH3+ have been extracted from the images and analyzed to enable a complete determination of the radial dipole matrix elements and relative phases that describe the ionization dynamics. This determination leads to the deduction of significantly different dynamics from those extracted in previous studies which lacked either angular information or rotational resolution.
View Article and Find Full Text PDFWe present a fit to photoelectron angular distributions (PADs) measured following the photoionization of rotationally selected A1Au state acetylene. In the case of the 4(1)2Sigmau- vibronic state of the ion, we are able to use this fit to make a complete determination of the radial dipole matrix elements and phases connecting the prepared level to each photoelectron partial wave. We have also investigated other Renner-Teller subbands with a view to disentangling geometrical and dynamical contributions to the resulting PADs.
View Article and Find Full Text PDFAngle-resolved photoelectron spectra from rotationally selected A1Au state acetylene have been recorded using velocity-map imaging. Several Renner-Teller split vibrational bands have been observed and assigned, showing good agreement with previous zero kinetic energy photoelectron (ZEKE) work [S. T.
View Article and Find Full Text PDF