Publications by authors named "Hock Soon Seah"

The skeleton, or medial axis, is an important attribute of 2-D shapes. The disk B-spline curve (DBSC) is a skeleton-based parametric freeform 2-D region representation, which is defined in the B-spline form. The DBSC describes not only a 2-D region, which is suitable for describing heterogeneous materials in the region, but also the center curve (skeleton) of the region explicitly, which is suitable for animation, simulation, and recognition.

View Article and Find Full Text PDF

To autonomously move and operate objects in cluttered indoor environments, a service robot requires the ability of 3D scene perception. Though 3D object detection can provide an object-level environmental description to fill this gap, a robot always encounters incomplete object observation, recurring detections of the same object, error in detection, or intersection between objects when conducting detection continuously in a cluttered room. To solve these problems, we propose a two-stage 3D object detection algorithm which is to fuse multiple views of 3D object point clouds in the first stage and to eliminate unreasonable and intersection detections in the second stage.

View Article and Find Full Text PDF

Virtual reality (VR) is rapidly becoming an inexpensive, mainstream technology. VR technology is superambulatory as it allows participants to be examined under standardized environments and tests anywhere. In addition, it can test participants in different virtual spaces, including environments that are unsafe, inaccessible, costly or difficult to set up, or even nonexistent.

View Article and Find Full Text PDF

Environmental perception is a vital feature for service robots when working in an indoor environment for a long time. The general 3D reconstruction is a low-level geometric information description that cannot convey semantics. In contrast, higher level perception similar to humans requires more abstract concepts, such as objects and scenes.

View Article and Find Full Text PDF

A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages.

View Article and Find Full Text PDF

The three-dimensional measurement technique using binary pattern projection with projector defocusing has become increasingly important due to its high speed and high accuracy. To obtain even faster speed without sacrificing accuracy, a ternary Gray code-based phase-unwrapping method is proposed by using even fewer binary patterns, which makes it possible to efficiently and accurately unwrap the phase. Theoretical analysis, simulations, and experiments are presented to validate the proposed method's efficiency and robustness.

View Article and Find Full Text PDF

Phase-shifting profilometry combined with Gray-code patterns projection has been widely used for 3D measurement. In this technique, a phase-shifting algorithm is used to calculate the wrapped phase, and a set of Gray-code binary patterns is used to determine the unwrapped phase. In the real measurement, the captured Gray-code patterns are no longer binary, resulting in phase unwrapping errors at a large number of erroneous pixels.

View Article and Find Full Text PDF

Phase shifting profilometry (PSP) using binary fringe patterns with projector defocusing is promising for high-speed 3D shape measurement. To obtain a high-quality phase, the projector usually requires a high defocusing level, which leads to a drastic fall in fringe contrast. Due to its convenience and high speed, PSP using squared binary patterns with small phase shifting algorithms and slight defocusing is highly desirable.

View Article and Find Full Text PDF

Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures.

View Article and Find Full Text PDF

How do we retrieve cartoon characters accurately? Or how to synthesize new cartoon clips smoothly and efficiently from the cartoon library? Both questions are important for animators and cartoon enthusiasts to design and create new cartoons by utilizing existing cartoon materials. The first key issue to answer those questions is to find a proper representation that describes the cartoon character effectively. In this paper, we consider multiple features from different views, i.

View Article and Find Full Text PDF

Correspondence construction of objects in key frames is the precondition for inbetweening and coloring in 2-D computer-assisted animation production. Since each frame of an animation consists of multiple layers, objects are complex in terms of shape and structure. Therefore, existing shape-matching algorithms specifically designed for simple structures such as a single closed contour cannot perform well on objects constructed by multiple contours with an open shape.

View Article and Find Full Text PDF

Laser scanning confocal endomicroscope (LSCEM) has emerged as an imaging modality which provides non-invasive, in vivo imaging of biological tissue on a microscopic scale. Scientific visualizations for LSCEM datasets captured by current imaging systems require these datasets to be fully acquired and brought to a separate rendering machine. To extend the features and capabilities of this modality, we propose a system which is capable of performing realtime visualization of LSCEM datasets.

View Article and Find Full Text PDF

The confocal fluorescence endomicroscopy is an emerging technology for imaging the living subjects inside the animals and human bodies. However, the acquired images vary, due to two degrees of freedom-tissue movement and tissue expansion/contraction. This makes the 3D reconstruction of them difficult and thus limits the clinic applications.

View Article and Find Full Text PDF

Electronic speckle pattern interferometry is one of the methods measuring the displacement on object surfaces in which fringe patterns need to be evaluated. Noise is one of the key problems affecting further processing and reducing measurement quality. We propose an application of coherence-enhancing diffusion to fringe-pattern denoising.

View Article and Find Full Text PDF

Conveying shape using feature lines is an important visualization tool in visual computing. The existing feature lines (e.g.

View Article and Find Full Text PDF

A simple but effective approach for the demodulation of a single fringe pattern is proposed. The phase with an undetermined sign is directly obtained by taking the arccosine value of a preprocessed fringe pattern. The local frequencies, also with an undetermined sign, are then estimated by local matching.

View Article and Find Full Text PDF

A 3D windowed Fourier transform is proposed for fringe sequence analysis, which processes the joint spatial and temporal information of the fringe sequence simultaneously. The 2D windowed Fourier transform in the spatial domain and the 1D windowed Fourier transform in the temporal domain are two special cases of the proposed method. The principles of windowed Fourier filtering and windowed Fourier ridges are developed.

View Article and Find Full Text PDF