Publications by authors named "Hochstrasser D"

We studied simultaneous EMG and midline EEG responses, including over the cerebellum, in 10 standing subjects (35 ± 15 yr; 5 females, 5 males). Recordings were made following repeated taps to the sternum, stimuli known to evoke short-latency EMG responses in leg muscles, consistent with postural reflexes. EEG power had relatively more high-frequency components (>30 Hz) when recorded from electrodes over the cerebellum (Iz and SIz) compared with other midline electrodes.

View Article and Find Full Text PDF

The cerebellum is known to have extensive reciprocal connectivity with the cerebral cortex, including with prefrontal and posterior parietal cortex, which play an important role on the planning and execution of voluntary movement. In the present article we report an exploratory non-invasive electrophysiological study of the activity of the cerebellum and cerebrum during voluntary finger and foot movements. In a sample of five healthy adult subjects, we recorded EEG and the electro-cerebellogram (ECeG) with a 10% cerebellar extension montage during voluntary left and right index finger and foot movements.

View Article and Find Full Text PDF

The cerebellum plays a critical role in the modulation of vestibular reflexes, dependent on input from proprioceptive afferents. The mechanism of this cerebellar control is not well understood. In a sample of 11 healthy human subjects, we investigated the effects of head orientation on ocular, cervical, postural and cerebellar short latency potentials evoked by impulsive stimuli applied at both mastoids and midline skull sites.

View Article and Find Full Text PDF

Background: Biological diagnosis of hemoglobin disorders is a complex process relying on the combination of several analytical techniques to identify Hb variants in a particular sample. Currently, hematology laboratories usually use high-performance liquid chromatography (HPLC), capillary electrophoresis and gel-based methods to characterize Hb variants. Co-elution and co-migration may represent major issues for precise identification of Hb variants, even for the most common ones such as Hb S and C.

View Article and Find Full Text PDF

Characterization of protein structure modifications is an important field in mass spectrometry (MS)-based proteomics. Here, we describe a process to quickly and reliably identify a mass change in a targeted protein sequence by top-down mass spectrometry (TD MS) using electron transfer dissociation (ETD). The step-by-step procedure describes how to develop a TD MS method for data acquisition as well as the data analysis process.

View Article and Find Full Text PDF

Accessing online health content of high quality and reliability presents challenges. Laypersons cannot easily differentiate trustworthy content from misinformed or manipulated content. This article describes complementary approaches for members of the general public and health professionals to find trustworthy content with as little bias as possible.

View Article and Find Full Text PDF

The Health On the Net Foundation (HON) was born in 1996, during the beginning of the World Wide Web, from a collective decision by health specialists, led by the late Jean-Raoul Scherrer, who anticipated the need for online trustworthy health information. Because the Internet is a free space that everyone shares, a search for quality information is like a shot in the dark: neither will reliably hit their target. Thus, HON was created to promote deployment of useful and reliable online health information, and to enable its appropriate and efficient use.

View Article and Find Full Text PDF

A previous high-resolution metabolomic study pointed out a dysregulation of urinary steroids and bile acids in human cases of acute dioxin exposure. A subset of 24 compounds was highlighted as putative biomarkers. The aim of the current study was (i) to evaluate the 24 biomarkers in an independent human cohort exposed to dioxins released from the incineration fumes of a municipal waste incinerator and; (ii) to identify them by comparison with authentic chemical standards and biosynthesised products obtained with in vitro metabolic reactions.

View Article and Find Full Text PDF

The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines.

View Article and Find Full Text PDF

The screening of endocrine disrupting chemicals (EDCs) that may alter steroidogenesis represents a highly important field mainly due to the numerous pathologies, such as cancer, diabetes, obesity, osteoporosis, and infertility that have been related to impaired steroid-mediated regulation. The adrenal H295R cell model has been validated to study steroidogenesis by the Organization for Economic Co-operation and Development (OECD) guideline. However, this guideline focuses solely on testosterone and estradiol monitoring, hormones not typically produced by the adrenals, hence limiting possible in-depth mechanistic investigations.

View Article and Find Full Text PDF

Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants.

View Article and Find Full Text PDF

Background: The use of targeted LC-MS/MS methods for protein quantitation in clinical laboratories implies a careful evaluation of potential sources of analytical interference. In this study, we investigated whether inflammation, which is associated with both the release of proteolytic enzymes and increased expression of acute phase protease inhibitors, is affecting the accuracy of a haptoglobin selected reaction monitoring (SRM) assay.

Results: A SRM assay was developed and used to quantify haptoglobin in 57 human serum samples.

View Article and Find Full Text PDF

Untargeted metabolomic approaches offer new opportunities for a deeper understanding of the molecular events related to toxic exposure. This study proposes a metabolomic investigation of biochemical alterations occurring in urine as a result of dioxin toxicity. Urine samples were collected from Czech chemical workers submitted to severe dioxin occupational exposure in a herbicide production plant in the late 1960s.

View Article and Find Full Text PDF

Over the last two decades, numerous genomes of pathogenic bacteria have been fully sequenced and annotated, while others are continuously being sequenced. To date, the sequences of more than 8,500 whole bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing simultaneously to progresses in methods allowing to study whole transcriptome and proteome of bacteria provide the basis of comprehensive understanding of metabolism, adaptability to environment, regulation, resistance pathways, or pathogenicity mechanisms of bacterial pathogens.

View Article and Find Full Text PDF

Background: Interleukin (IL)-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS).

Objective: To perform a large retrospective study designed to test cerebrospinal fluid (CSF) IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS) from other inflammatory neurological diseases (OIND).

Patients And Methods: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

Precise and accurate quantification of proteins is essential in clinical laboratories. Here, we present a mass spectrometry (MS)-based method for the quantification of intact proteins in an ion trap mass spectrometer. The developed method is based on the isolation and detection of precursor ions for the quantification of the corresponding signals.

View Article and Find Full Text PDF

Differentiating malignant from nonmalignant biliary stenoses is challenging. This could be facilitated by the measurement of cancer biomarkers in bile. We aimed at (i) identifying new cancer biomarkers by comparative proteomic analysis of bile collected from patients with a malignant or benign biliary stenosis (exploratory phase) and (ii) verifying the accuracy of the newly identified potential biomarkers for discriminating malignant versus nonmalignant biliary stenoses in a larger group of patients (confirmation phase).

View Article and Find Full Text PDF
Article Synopsis
  • Acute pancreatitis is a serious inflammatory condition of the pancreas that can lead to severe complications and even death, with its underlying biological processes being complex and not fully understood.
  • The study employed a rat model to analyze how protein levels in the pancreas change over time after inducing severe necrotizing acute pancreatitis using taurocholate infusion.
  • Findings revealed that proteins related to acinar cell secretion exhibited different patterns of expression compared to other cellular processes, suggesting that secretory pathway proteins might play a crucial role in modulating pancreatic injury during the disease.
View Article and Find Full Text PDF

Urine results from a coordinated activity of glomerular and tubular compartments of the kidney. As a footprint of these cellular functional processes, urinary exosomes, and 40-80 nm membrane vesicles released after fusion with the plasma membrane into the extracellular environment by renal epithelial cells, are a source for identification of proteins and investigation of their role in the kidney. The aim of the present study was the identification of podocyte exosome proteins based on urine immunoabsorption using podocyte-specific CR1-immunocoated beads followed by proteomic analysis using LC MS/MS techniques.

View Article and Find Full Text PDF

High throughput protein identification and quantification analysis based on mass spectrometry are fundamental steps in most proteomics projects. Here, we present EasyProt (available at http://easyprot.unige.

View Article and Find Full Text PDF

Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry.

View Article and Find Full Text PDF

Background: Ability to accurately determine time of stroke onset remains challenging. We hypothesized that an early biomarker characterized by a rapid increase in blood after stroke onset may help defining better the time window during which an acute stroke patient may be candidate for intravenous thrombolysis or other intravascular procedures.

Methods: The blood level of 29 proteins was measured by immunoassays on a prospective cohort of stroke patients (N = 103) and controls (N = 132).

View Article and Find Full Text PDF

A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified.

View Article and Find Full Text PDF