This study investigates the tensile behaviors of additively manufactured (AM) 17-4PH stainless steels heat-treated within various temperature ranges from 400 °C to 700 °C in order to identify the effective aging temperature. Despite an aging treatment of 400-460 °C increasing the retained austenite content, an enhancement of the tensile properties was achieved without a strength-ductility trade-off owing to precipitation hardening by the Cu particles. Due to the intricate evolution of the microstructure, aging treatments above 490 °C led to a loss in yield strength and ductility.
View Article and Find Full Text PDFDeep learning technology is generally applied to analyze periodic data, such as the data of electromyography (EMG) and acoustic signals. Conversely, its accuracy is compromised when applied to the anomalous and irregular nature of the data obtained using a magneto-impedance (MI) sensor. Thus, we propose and analyze a deep learning model based on recurrent neural networks (RNNs) optimized for the MI sensor, such that it can detect and classify data that are relatively irregular and diverse compared to the EMG and acoustic signals.
View Article and Find Full Text PDFIn this study, we manufactured a non-equiatomic (CoNi)CrFeC high-entropy alloy (HEA) consisting of a single-phase face-centered-cubic structure. We applied in situ neutron diffraction coupled with electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) to investigate its tensile properties, microstructural evolution, lattice strains and texture development, and the stacking fault energy. The non-equiatomic (CoNi)CrFeC HEA revealed a good combination of strength and ductility in mechanical properties compared to the equiatomic CoNiCrFe HEA, due to both stable solid solution and precipitation-strengthened effects.
View Article and Find Full Text PDFMaterials (Basel)
January 2022
The present work extends the examination of selective laser melting (SLM)-fabricated 15-5 PH steel with the 8%-transient-austenite-phase towards fully-reversed strain-controlled low-cycle fatigue (LCF) test. The cyclic-deformation response and microstructural evolution were investigated via in-situ neutron-diffraction measurements. The transient-austenite-phase rapidly transformed into the martensite phase in the initial cyclic-hardening stage, followed by an almost complete martensitic transformation in the cyclic-softening and steady stage.
View Article and Find Full Text PDFthermal cycling neutron diffraction experiments were employed to unravel the effect of thermal history on the evolution of phase stability and internal stresses during the additive manufacturing (AM) process. While the fully-reversible martensite-austenite phase transformation was observed in the earlier thermal cycles where heating temperatures were higher than A, the subsequent damped thermal cycles exhibited irreversible phase transformation forming reverted austenite. With increasing number of thermal cycles, the thermal stability of the retained austenite increased, which decreased the coefficient of thermal expansion.
View Article and Find Full Text PDF