We report the bottom-up synthesis of colloidal two-dimensional (2D) layered silicon carbide (SiC) quantum dots with a cubic structure, lateral size of 5-10 nm, ⟨110⟩ exfoliation to few atomic layers, and surface passivation with 1-dodecene. Samples shielded from oxygen and plasma-annealed for purity exhibit narrow blue photoluminescence (PL) with quantum yields (QYs) over 60% in exceptional cases, while unshielded nanocrystals (NCs) exhibit broad blue/green/white PL with 10-15% QY. The latter scenario is attributed to excess surface carbon and oxygen accrued during synthesis and processing, with size separation through ultracentrifugation revealing size-dependent impurity emission.
View Article and Find Full Text PDFMacroions such as nanoparticles, polyelectrolytes, ionic gels, and amphiphiles can form condensed, often self-assembled, phases that are embedded in a solvent region. The condensed phase contains not only the partially or fully immobile charges of their macroions but also corresponding counterions that are mobile and thus free to migrate out of their confinement into the solvent region where they benefit from high translational entropy. Based on the nonlinear Poisson-Boltzmann model for monovalent ions, we quantify the corresponding fraction of released counterions for a planar slab geometry of the macroion phase.
View Article and Find Full Text PDFHigh reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade.
View Article and Find Full Text PDFRising atmospheric carbon dioxide concentrations (CO) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change. In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δN values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δN, we also analyzed a subset of previously published foliar δN values from across the United States to parse the effects of N deposition and CO rise.
View Article and Find Full Text PDFImpurities that hinder luminescence are a common problem in the synthesis of nanocrystals, and controlling the synthesis reaction could provide a way to avoid or use impurities beneficially. Excited state molecular dynamics is used to determine how oxygen impurities appear in the plasma synthesis of silicon carbide nanocrystals (SiC NCs). Formation of impurities is studied by considering the intermediate structures in the simulated photoreaction.
View Article and Find Full Text PDFTraditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions.
View Article and Find Full Text PDFWe performed x-ray photoelectron spectroscopy measurements on a thin film of Si nanocrystals (SiNCs) while applying DC or AC external biases to extract the resistance and the capacitance of the thin film. The measurement consists of the application of 10 V DC or square wave pulses of 10 V amplitude to the sample at various frequencies ranging from 0.01 to 1 MHz while recording x-ray photoemission data.
View Article and Find Full Text PDFThe impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired N-labelling experiments in temperate, subtropical, and tropical forests.
View Article and Find Full Text PDFDetermining appropriate farming management practices to adapt to climate change with lower environmental costs is important for sustainable agricultural production. In this study, a long-term experiment (1985-2019) was conducted under different management practices combining fertilization rate (no, low and high N fertilizer, N, N and N), straw additions (no, low and high addition, S, S and S) with conservation tillage (no-tillage, NT) in the North China Plain (NCP). The Denitrification-Decomposition (DNDC) model was firstly evaluated using the experimental data, and then applied to simulate the changes of crop yields, soil organic carbon (SOC), and NO emissions under different management practices combined with climate change scenarios, under low and high emission scenarios of societal development pathways (SSP245 and SSP585, respectively) with climate projections from 2031 to 2100.
View Article and Find Full Text PDFThe synthesis and photophysics (UV-vis absorption, emission, and transient absorption) of four neutral heteroleptic cyclometalated iridium(III) complexes (-) incorporating thiophene/selenophene-diketopyrrolopyrrole (DPP)-substituted N-heterocyclic carbene (NHC) ancillary ligands are reported. The effects of thiophene versus selenophene substitution on DPP and bis- versus monoiridium(III) complexation on the photophysics of these complexes were systematically investigated via spectroscopic techniques and density functional theory calculations. All complexes exhibited strong vibronically resolved absorption in the regions of 500-700 nm and fluorescence at 600-770 nm, and both are predominantly originated from the DPP-NHC ligand.
View Article and Find Full Text PDFWe provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs.
View Article and Find Full Text PDFPeatlands store one third of global soil carbon (C) and up to 15% of global soil nitrogen (N) but often have low plant nutrient availability owing to slow organic matter decomposition under acidic and waterlogged conditions. In rainwater-fed ombrotrophic peatlands, elevated atmospheric N deposition has increased N availability with potential consequences to ecosystem nutrient cycling. Here, we studied how 14 years of continuous N addition with either nitrate or ammonium had affected ericoid mycorrhizal (ERM) shrubs at Whim Bog, Scotland.
View Article and Find Full Text PDFNitrogen (N) is one of the major nutrients limiting plant growth in terrestrial ecosystems. To avoid plant-microbe competition, previous studies on plant N uptake preference often used hydroponic experiments on fine roots of seedlings and demonstrated ammonium preference for conifer species; however, we lack information about N uptake and translocation in the field. In this paper, we described a method of in situ paired 15N labeling and reported the rates and time course of N uptake and translocation by mature trees in situ.
View Article and Find Full Text PDFThe effects of nitrogen (N) deposition on forests largely depend on its fate after entering the ecosystem. While several studies have addressed the forest fate of N deposition using N tracers, the long-term fate and redistribution of deposited N in tropical forests remains unknown. Here, we applied N tracers to examine the fates of deposited ammonium ( ) and nitrate ( ) separately over 3 years in a primary and a secondary tropical montane forest in southern China.
View Article and Find Full Text PDFConifers are considered to prefer to take up ammonium (NH ) over nitrate (NO ). However, this conclusion is mainly based on hydroponic experiments that separate roots from soils. It remains unclear to what extent mature conifers can use nitrate compared to ammonium under field conditions where both roots and soil microbes compete for nitrogen (N).
View Article and Find Full Text PDFStable soil pH is a key property in maintaining an ecosystem's structure, function, and sustainability. Increasing atmospheric deposition and grassland use on the Tibetan Plateau (TP) may increase the soil acidification risk, but we lack such information to date. Here, we evaluated the soil acidification risk in the TP, by comparing it with that in the Mongolia Plateau (MP) and applying the acid-base balance principles on atmospheric inputs, soils, and plants from 1980 to 2019.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2020
Using a combination of density-gradient and analytical ultracentrifugation, we studied the photophysical profile of CsPbBr nanocrystal (NC) suspensions by separating them into size-resolved fractions. Ultracentrifugation drastically alters the ligand profile of the NCs, which necessitates postprocessing to restore colloidal stability and enhance quantum yield (QY). Rejuvenated fractions show a 50% increase in QY compared to no treatment and a 30% increase with respect to the parent.
View Article and Find Full Text PDFBelowground climate change responses remain a key unknown in the Earth system. Plant fine-root response is especially important to understand because fine roots respond quickly to environmental change, are responsible for nutrient and water uptake, and influence carbon cycling. However, fine-root responses to climate change are poorly constrained, especially in northern peatlands, which contain up to two-thirds of the world's soil carbon.
View Article and Find Full Text PDFNitrification is a crucial step in ecosystem nitrogen (N) cycling, but scaling up from plot-based measurements of gross nitrification to catchments is difficult. Here, we employed a newly developed method in which the oxygen isotope anomaly (ΔO) of nitrate (NO) is used as a natural tracer to quantify in situ catchment-scale gross nitrification rate (GNR) for a temperate forest from 2014 to 2017 in northeastern China. The annual GNR ranged from 71 to 120 kg N ha yr (average 94 ± 10 kg N ha yr) over the 4 years in this forest.
View Article and Find Full Text PDFSilicon nanocrystals (SiNCs) with bright bandgap photoluminescence (PL) are of current interest for a range of potential applications, from solar windows to biomedical contrast agents. Here, we use the liquid precursor cyclohexasilane (SiH) for the plasma synthesis of colloidal SiNCs with exemplary core emission. Through size separation executed in an oxygen-shielded environment, we achieve PL quantum yields (QYs) approaching 70% while exposing intrinsic constraints on efficient core emission from smaller SiNCs.
View Article and Find Full Text PDFMany plant and fungal species use volatile organic compounds (VOCs) as chemical signals to convey information about the location or quality of their fruits or fruiting bodies to animal dispersers. Identifying the environmental factors and biotic interactions that shape fruit selection by animals is key to understanding the evolutionary processes that underpin chemical signaling. Using four Elaphomyces truffle species, we explored the role of fruiting depth, VOC emissions, and protein content in selection by five rodent species.
View Article and Find Full Text PDFIdentifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers.
View Article and Find Full Text PDFThe synthesis, crystal structure, and photophysics of a series of neutral cyclometalated iridium(III) complexes bearing substituted N-heterocyclic carbene (NHC) ancillary ligands ((CN)Ir(R-NHC), where CN and NHC refer to the cyclometalating ligand benzo[]quinoline and 1-phenylbenzimidazole, respectively) are reported. The NHC ligands were substituted with electron-withdrawing or -donating groups on C4' of the phenyl ring (R NO (), CN (), H (), OCH (), N(CH) ()) or C5 of the benzimidazole ring (R = NO (), N(CH) ()). The configuration of was confirmed by a single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDFWe compared the δC and δN of forest material with an extensive sporocarp collection to elucidate the role of litter, wood and soil as fungal carbon and nitrogen sources in Finnish boreal Picea abies-dominated forests. Ectomycorrhizal Hydnum and Cortinarius had higher δN than other ectomycorrhizal fungi, suggesting use of N-enriched, deeper nitrogen. Russula had lower δN than other ectomycorrhizal fungi and resembled some litter decay genera, suggesting use of litter-derived nitrogen.
View Article and Find Full Text PDF