This manuscript investigates the system performance of hybrid wireless and power line communication networks for indoor Internet of Things applications. Differentiating itself from the existing literature, the performance of the direct link and dual-hop energy harvesting relay-aided links is analyzed under the condition of indoor fading modeled by log-normal distribution. Moreover, the manuscript presents the analytical expressions of the successful transmission probability of the deployed opportunistic decode-and-forward and amplify-and-forward relay selection scheme, and validates them with Monte Carlo simulations.
View Article and Find Full Text PDFThanks to the benefits of non-orthogonal multiple access (NOMA) in wireless communications, we evaluate a wireless sensor network deploying NOMA (WSN-NOMA), where the destination can receive two data symbols in a whole transmission process with two time slots. In this work, two relaying protocols, so-called time-switching-based relaying WSN-NOMA (TSR WSN-NOMA) and power-splitting-based relaying WSN-NOMA (PSR WSN-NOMA) are deployed to study energy-harvesting (EH). Regarding the system performance analysis, we obtain the closed-form expressions for the exact and approximate outage probability (OP) in both protocols, and the delay-limited throughput is also evaluated.
View Article and Find Full Text PDF