*A plant's bacterial endophyte community is thought to be recruited from the rhizosphere, but how this recruitment is influenced by the plant's phytohormone signaling is unknown. Ethylene regulates plant-microbe interactions; here, we assess the role of ethylene in the recruitment of culturable endophytic bacteria from native soils. *We grew wild-type Nicotiana attenuata plants and isogenic transformed plants deficient in ethylene biosynthesis (ir-aco1) or perception (35S-etr1) in four native soils and quantified the extent of culturable bacterial endophyte colonization (by plate counting) and diversity (by amplified rDNA restriction analysis and 16S rDNA sequencing).
View Article and Find Full Text PDFUsing a proteomics approach, a PP2C-type phosphatase (renamed PIA1, for PP2C induced by AvrRpm1) was identified that accumulates following infection by Pseudomonas syringae expressing the type III effector AvrRpm1, and subsequent activation of the corresponding plant NB-LRR disease resistance protein RPM1. No accumulation of PIA1 protein was seen following infection with P. syringae expressing AvrB, another type III effector that also activates RPM1, although PIA transcripts were observed.
View Article and Find Full Text PDFBackground: All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or produce indole acetic acid (IAA). Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested.
View Article and Find Full Text PDF