Publications by authors named "Hoang Thanh Lam"

Motivation: Automated machine learning (AutoML) solutions can bridge the gap between new computational advances and their real-world applications by enabling experimental scientists to build their own custom models. We examine different steps in the development life-cycle of peptide bioactivity binary predictors and identify key steps where automation cannot only result in a more accessible method, but also more robust and interpretable evaluation leading to more trustworthy models.

Results: We present a new automated method for drawing negative peptides that achieves better balance between specificity and generalization than current alternatives.

View Article and Find Full Text PDF

Healthcare fraud, waste and abuse are costly problems that have huge impact on society. Traditional approaches to identify non-compliant claims rely on auditing strategies requiring trained professionals, or on machine learning methods requiring labelled data and possibly lacking interpretability. We present Clais, a collaborative artificial intelligence system for claims analysis.

View Article and Find Full Text PDF

To protect vital health program funds from being paid out on services that are wasteful and inconsistent with medical practices, government healthcare insurance programs need to validate the integrity of claims submitted by providers for reimbursement. However, due the complexity of healthcare billing policies and the lack of coded rules, maintaining "integrity" is a labor-intensive task, often narrow-scope and expensive. We propose an approach that combines deep learning and an ontology to support the extraction of actionable knowledge on benefit rules from regulatory healthcare policy text.

View Article and Find Full Text PDF