Publications by authors named "Hoang Sinh Le"

Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression.

View Article and Find Full Text PDF

This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay.

View Article and Find Full Text PDF

The persistent presence of organic pollutants like dyes in water environment necessitates innovative approaches for efficient degradation. In this research, we developed an advanced hybrid catalyst by combining metal oxides (CuO, FeO) with UiO-66, serving as a heterogeneous Fenton catalyst for for efficient RB19 breakdown in water with HO. The control factors to the catalytic behavior were also quantified by machine learning.

View Article and Find Full Text PDF

New wood-based composite materials with thermal conductivity are greatly desired in the fields of packaging materials for electronic components. In this study, a new multifunctional composite material (M@FC) is prepared by simply blending clay-like TiCT MXene and delignified wood fibers together, and then followed by an infusing epoxy resin with environmentally friendly vacuum assisted resin transfer molding (VARTM) process. The resulting M@FC (0.

View Article and Find Full Text PDF

In this study, natural core-shell structure activated carbon beads (ACBs) from Litsea glutinosa seeds were successfully produced, characterized, and applied for adsorption of methylene blue (MB). The ACBs were prepared using single-step carbonization-activation with NaHCO at the optimized activation temperature, time, and activating agent concentration of 450 °C, 60 min, and 5%, respectively. Batch experiments were performed to determine the optimum adsorption conditions, suitable kinetic and isotherm models, and thermodynamic parameters for the adsorption of MB onto ACBs.

View Article and Find Full Text PDF

This study aimed to compare the effectiveness between curcumin-oligochitosan nanoplexes (CUR-OCH nanoplexes) and oligochitosan-coated curcumin-encapsulated liposomes (OCH-Lip-CUR) with respect to wound healing and scar treatment. Firstly, CUR-OCH nanoplexes was prepared by drug-polysaccharide complexation method and OCH-Lip-CUR was prepared by a combining method of lipid-film hydration and sonication. Their cytotoxicity and wound healing and scar treatment effectiveness were evaluated using 3T3 cells and mice respectively.

View Article and Find Full Text PDF

Magnetic activated carbon/chitosan composite (MACCS) beads from spent coffee grounds and shrimp shells were synthesized using green tea extract as a crosslinker. The adsorbent was then applied for removal of Ni(II) ions from aqueous solution after carefully characterizing it by various techniques (XRD, FTIR, FE-SEM, EDX, VSM and BET). The adsorption kinetics, isotherms, thermodynamics, the effects of key adsorption factors such as the pH value, initial Ni(II) concentration, contact time, adsorbent dose and temperature were investigated in detail.

View Article and Find Full Text PDF
Article Synopsis
  • Fiber-based temperature sensors are essential for advancing wearable electronic systems, but development has been limited.
  • A new method has been introduced to create wearable temperature sensors using freestanding single reduction graphene oxide (rGO) fibers through wet spinning and controlled reduction.
  • The developed sensor exhibits high responsiveness, fast reaction times, and remains functional under mechanical strain, making it suitable for integration into everyday clothing like socks and undershirts for monitoring temperature.
View Article and Find Full Text PDF