Publications by authors named "Hoang Nhat Phong Vo"

Per- and poly-fluoroalkyl substances (PFAS) are recalcitrant, synthetic chemicals that are ubiquitous in the environment because of their widespread use in a variety of consumer and industrial products. PFAS contamination has become an increasing issue in recent years, which needs to be urgently addressed. Foam fractionation is emerging as a potential remediation option that removes PFAS by adsorption to the surface of rising air bubbles which are removed from the system as a foam.

View Article and Find Full Text PDF

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs ( ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs ( ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment).

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) produced from organic-rich wastewater by anaerobic digestion attract attention due to the increasing volatile fatty acids market, sustainability and environmentally friendly characteristics. This review aims to give an overview of the roles and applications of enzymes, a biocatalyst which plays a significant role in anaerobic digestion, to enhance volatile fatty acids production. This paper systematically overviewed: (i) the enzymatic pathways of VFAs formation, competition, and consumption; (ii) the applications of enzymes in VFAs production; and (iii) feasible measures to boost the enzymatic processes.

View Article and Find Full Text PDF

This study investigated the effect of CaO pretreatment on sulfonamide antibiotics (SMs) remediation by Chlorella sp. Results showed that a CaO dose ranging from 0.05 to 0.

View Article and Find Full Text PDF

The widespread use of per- and polyfluoroalkyl substances (PFASs)-related products such as aqueous film-forming foams (AFFF) has led to increasing contamination of groundwater systems. The concentration of PFASs in AFFF-impacted groundwater can be several orders of magnitude higher than the drinking water standard. There is a need for a sustainable and effective sorbent to remove PFASs from groundwater.

View Article and Find Full Text PDF

This study investigated the impacts of selective sole carbon source-induced micropollutants (MPs) cometabolism of Chlorella sp. by: (i) extracellular polymeric substances (EPS), superoxide dismutase and peroxidase enzyme production; (ii) MPs removal efficiency and cometabolism rate; (iii) MPs' potential degradation products identification; and (iv) degradation pathways and validation using the Eawag database to differentiate the cometabolism of Chlorella sp. with other microbes.

View Article and Find Full Text PDF

In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not only to determine the optimal ratio for pollutant remediation and biomass production but also to explore the role of microorganisms in the co-culture system. The results showed high total biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.

View Article and Find Full Text PDF

This study investigated the extracellular polymeric substance (EPS) and enzyme extrusion of Chlorella sp. using seven carbon sources and two salinities for potential pollutant co-metabolism. Results indicated that the levels of biomass, EPS and enzymes of microalgae cultured with glucose and saccharose outcompeted other carbon sources.

View Article and Find Full Text PDF
Article Synopsis
  • Bisphenol A (BPA) is a harmful pollutant in wastewater, and using non-toxic materials like bentonite clay can help remove it effectively and environmentally friendly.
  • A new composite material was developed, combining nano zero-valent iron (NZVI) with bentonite, which improves the effectiveness of BPA degradation by preventing agglomeration of the nano-metal catalysts.
  • The NZVI@bentonite composite showed significantly higher BPA degradation rates compared to using either NZVI or bentonite alone, proving its potential as a green catalyst in treating wastewater.
View Article and Find Full Text PDF

Acetaminophen (ACT) is commonly used as a counter painkiller and nowadays, it is increasingly present in the natural water environment. Although its concentrations are usually at the ppt to ppm levels, ACT can transform into various intermediates depending on the environmental conditions. Due to the complexity of the ACT degradation products and the intermediates, it poses a major challenge for monitoring, detection and to propose adequate treatment technologies.

View Article and Find Full Text PDF

Hospital wastewater contains acetaminophen (ACT) and nutrient, which need adequate removal and monitoring to prevent impact to environment and community. This study developed a pilot scale vertical flow constructed wetland (CW) to (1) remove high-dose ACT and pollutants in hospital wastewater and (2) identify the correlation of peroxidase enzyme extruded by Scirpus validus and pollutants removal efficiency. By that correlation, a low-cost method to monitor pollutants removal was drawn.

View Article and Find Full Text PDF

This study investigated the growth dynamics of a freshwater and marine microalgae with supported biochemical performance in saline wastewater, the pollutants assimilation by a developed method, and the mechanism of salinity's effect to pollutants assimilation. Maximal biomass yield was 400-500 mg/L at 0.1-1% salinity while the TOC, NO-N, PO-P were eliminated 39.

View Article and Find Full Text PDF

The development of the photobioreactors (PBs) is recently noticeable as cutting-edge technology while the correlation of PBs' engineered elements such as modellings, configurations, biomass yields, operating conditions and pollutants removal efficiency still remains complex and unclear. A systematic understanding of PBs is therefore essential. This critical review study is to: (1) describe the modelling approaches and differentiate the outcomes; (2) review and update the novel technical issues of PBs' types; (3) study microalgae growth and control determined by PBs types with comparison made; (4) progress and compare the efficiencies of contaminants removal given by PBs' types and (5) identify the future perspectives of PBs.

View Article and Find Full Text PDF