The electrochemical oxidative phenol coupling reaction is a sustainable method for accessing biphenolic compounds. Using the dimerization of sesamol as a model reaction, insights into the reaction mechanism were gained Raman spectroscopy. By varying the solvent and electrodes, different reaction mechanisms were identified and correlated with the respective product yields.
View Article and Find Full Text PDFAlthough being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b']dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2',3'-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 μA cm and 120 μA cm (at 0.
View Article and Find Full Text PDFThe heterogeneous electron-transfer (ET) reaction of cytochrome c (Cyt-c) electrostatically or covalently immobilized on electrodes coated with self-assembled monolayers (SAMs) of omega-functionalized alkanethiols is analyzed by surface-enhanced resonance Raman (SERR) spectroscopy and molecular dynamics (MD) simulations. Electrostatically bound Cyt-c on pure carboxyl-terminated and mixed carboxyl/hydroxyl-terminated SAMs reveals the same distance dependence of the rate constants, that is, electron tunneling at long distances and a regime controlled by the protein orientational distribution and dynamics that leads to a nearly distance-independent rate constant at short distances. Qualitatively, the same behavior is found for covalently bound Cyt-c, although the apparent ET rates in the plateau region are lower since protein mobility is restricted due to formation of amide bonds between the protein and the SAM.
View Article and Find Full Text PDFHeterogeneous electron transfer of proteins at biomimetic interfaces is characterized by unusual distance dependences of the electron-transfer rates, whose origin has been elusive and controversial. Using a two-color, time-resolved, surface-enhanced resonance Raman spectroelectrochemical approach, we have been able to monitor simultaneously and in real time the structure, electron-transfer kinetics, and configurational fluctuations of cytochrome c electrostatically adsorbed to electrodes coated with self-assembled monolayers. Our results show that the overall electron-transfer kinetics is determined by protein dynamics rather than by tunnelling probabilities and that the protein dynamics in turn is controlled by the interfacial electric field.
View Article and Find Full Text PDF