Semiconductor materials based on bismuth metal have been extensively explored for their potential in photocatalytic applications owing to their distinctive crystal structure. Herein, we present the development of a hybrid photocatalyst, CAU-17/BiOCl, featuring a flower-like nanosheet morphology tailored for the photocatalytic degradation of organic contaminants such as rhodamine B (RhB) and tetracycline hydrochloride (TCH). The composite material is obtained by growing thin CAU-17 layers directly onto the host flower-like BiOCl nanosheets under solvothermal conditions.
View Article and Find Full Text PDFThe designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing.
View Article and Find Full Text PDFNowadays, the widespread production and use of antibiotics have increased their presence in wastewater systems, posing a potential threat to the environment and human health. The development of advanced materials for treating antibiotics in wastewater has always received special attention. This study aimed to synthesize a novel CuO/FeO/MIL-101(Fe) nanocomposite and use it to degrade ciprofloxacin (CIP) antibiotics in an aqueous solution under visible light irradiation.
View Article and Find Full Text PDF